Ferromagnetic resonance and the spin Hall effect in the Fe3Al/Pt bilayer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented the results of studies of the magnetostatic and magnetic resonance properties of a Fe3Al/Pt thin-film bilayer structure synthesized by the molecular beam epitaxy method. Magnetometry and ferromagnetic resonance data indicate four-fold in-plane magnetocrystalline anisotropy of the Fe3Al layer. Under spin pumping conditions, the magnetic field dependence of the voltage signal arising due to the inverse spin Hall effect was measured, and the quantitative characteristic of the spin-charge transformation, the spin-Hall angle, in platinum was assessed as θSH = 0.030 ± 0.005.

Full Text

Restricted Access

About the authors

А. Kh. Kadikova

Kazan Federal University

Author for correspondence.
Email: anelyakadikova11@gmail.com

Institute of Physics

Russian Federation, Kazan

B. F. Gabbasov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Russian Federation, Kazan

I. V. Yanilkin

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Russian Federation, Kazan

A. I. Gumarov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Russian Federation, Kazan

D. G. Zverev

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Russian Federation, Kazan

A. G. Kiiamov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Russian Federation, Kazan

L. R. Tagirov

Kazan Federal University; Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan

Email: anelyakadikova11@gmail.com

Institute of Physics, Zavoisky Physical-Technical Institute

Russian Federation, Kazan; Kazan

R. V. Yusupov

Kazan Federal University

Email: anelyakadikova11@gmail.com

Institute of Physics

Russian Federation, Kazan

References

  1. Ферт А. // УФН. 2008. Т. 178. № 12. С. 1336; Fert A. // Phys. Usp. 2008. V. 51. P. 1336.
  2. Грюнберг П.А. // УФН. 2008. Т. 178. № 12. С. 1349; Gruenberg P.A. // Phys. Usp. 2008. V. 51. P. 1349.
  3. Kato Y.K., Myers R.C., Gossard A.C. et al. // Science. 2004. V. 306. No. 5703. P. 1910.
  4. Wunderlich J., Kaestner B., Sinova J. et al. // Phys. Rev. Lett. 2005. V. 94. No. 4. Art. No. 047204.
  5. Valenzuela S.O., Tinkham M. // Nature. 2006. V. 442. No. 7099. P. 176.
  6. Sinova J., Valenzuela S.O., Wunderlich J. et al. // Rev. Mod. Phys. 2015. V. 87. No. 4. P. 1213.
  7. Трушин А.С., Кичин Г.А., Звездин К.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 105; Trushin A.S., Kichin G.A., Zvezdin K.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 88.
  8. Saitoh E., Ueda M., Miyajima H. et al. // Appl. Phys. Lett. 2006. V. 88. No. 18. Art. No. 182509.
  9. Sandweg C.W., Kajiwara Y., Ando K. et al. // App. Phys. Lett. 2010. V. 97. No. 25. Art. No. 252504.
  10. Wang Y., Deorani P., Qiu X. et al. // App. Phys. Lett. 2014. V. 105. No. 15. Art. No. 152412.
  11. Wei Y., Zhang W., Lv B. et al. // Sci. Advances. 2021. V. 7. No. 4. Art. No. eabc5053.
  12. Костенко М.Г., Лукоянов А.В., Шредер Е.И. // Письма в ЖЭТФ. 2018. Т. 107. № 1—2. С. 128; Kostenko M.G., Lukoyanov A.V., Shreder E.I. // JETP Lett. 2018. V. 107. No. 2. P. 126.
  13. Ikeda O., Ohnuma I., Kainuma R. et al. // Intermetallics. 2001. V. 9. No. 9. P. 755.
  14. Матюнина М.В., Соколовский В.В., Загребин М.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 927; Matyunina M.V., Sokolovskiy V.V., Zagrebin M.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 844.
  15. Tserkovnyak Y., Brataas A., Bauer G.E.W. // Phys. Rev. Lett. 2002. V. 88. No. 11. Art. No. 117601.
  16. Ando K., Takahashi S., Ieda J. et al. // J. Appl. Phys. 2011. V. 109. No. 10. Art. No. 103913.
  17. Dubowik J., Graczyk P., Krysztofik A. et al. // Phys. Rev. Appl. 2020. V. 13. No. 5. Art. No. 054011.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction pattern of a thin Fe3Al film on a MgO (001) substrate when scanning along the angle θ.

Download (187KB)
3. Fig. 2. Magnetization reversal curves with a magnetic field lying in the plane of the samples: blue line – for H || [110]Fe3Al, burgundy line – for H || [100]Fe3Al; the inset shows the magnetization curve in a magnetic field applied along the normal to the film, H || [001]Fe3Al.

Download (254KB)
4. Fig. 3. FMR spectra of a single Fe3Al film (circles) and Fe3Al/Pt (triangles) and the results of their approximation (red lines) (a); orientation dependences of the FMR spectra of a thin Fe3Al film and a two-layer Fe3Al/Pt structure with rotation of the magnetic field in the plane of the films (b).

Download (341KB)
5. Fig. 4. Spin-Hall EMF arising under spin pumping conditions due to the manifestation of the inverse spin Hall effect in the Fe3Al/Pt bilayer structure (solid line). The dashed line shows the FMR spectrum recorded in the same orientation of the sample.

Download (93KB)

Copyright (c) 2024 Russian Academy of Sciences