Relaxation of multiple-quantum coherences in dipolar coupled 1H spin pairs in gypsum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution and relaxation of MQ NMR coherences on the preparation period were investigated experimentally on a single crystal of gypsum, CaSO4·2H2O. The theory describing the dynamics of MQ coherences on the preparation period of MQ experiment for a pair of spins was developed based on the Lindblad master equation. This theory predicts the appearance of MQ coherences of only zeroth and second orders, oscillatory exchange of their intensities and exponential decay with increasing of the preparation time. The proposed theory describes the experimental data well. It is shown that the frequency of oscillations depends on the orientation of the crystal in the external magnetic field and determined by the dipolar coupling between protons of the water molecules contained in the gypsum crystal. The relaxation time of MQ coherences of zeroth and second orders, Tr= 150±15 μs, were independent of the crystal orientation, which suggest a common source of relaxation due to the dipole-dipole interactions with protons surrounding water molecule.

Full Text

Restricted Access

About the authors

Е. B. Fel’dman

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: svasilev@icp.ac.ru
Russian Federation, Chernogolovka

E. I. Kuznetsova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: svasilev@icp.ac.ru
Russian Federation, Chernogolovka

A. V. Fedorova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: svasilev@icp.ac.ru
Russian Federation, Chernogolovka

K. V. Panicheva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University

Email: svasilev@icp.ac.ru
Russian Federation, Chernogolovka; Moscow

S. G. Vasil’ev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Author for correspondence.
Email: svasilev@icp.ac.ru
Russian Federation, Chernogolovka

A. I. Zenchuk

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: svasilev@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Baum J., Munowitz M., Garroway A.N., Pines A. // J. Chem. Phys. 1985. V. 83. No. 5. P. 2015.
  2. Lovric M., Krojanski H.G., Suter D. // Phys. Rev. A. 2007. V. 75. Art. No. 42305.
  3. Fel’dman E.B., Pechen A.N., Zenchuk A.I. // Phys. Lett. A. 2007. V. 413. Art. No. 127605.
  4. Doronin S.I., Fel’dman E.B., Lazarev I.D. // Phys. Rev. A. 2019. V. 100. Art. No. 022330.
  5. Domínguez F.D., Álvarez G.A. // Phys. Rev. A. 2021. V. 104. Art. No. 062406.
  6. Зобов В.Е., Лундин А.А. // ЖЭТФ. 2022. Т. 162. № 5. C. 778; Zobov V.E., Lundin A.A. // JETP. 2022. V. 135. P. 752.
  7. Gärttner M., Bohnet J., Safavi-Naini A. et al. // Nature Phys. 2017. V. 13. P. 781.
  8. Gleason K.K. // Concepts Magn. Reson. 1993. V. 5. P. 199.
  9. Vasil’ev S.G., Volkov V.I., Tatarinova E.A. et al. // J. Non-Cryst. Solids. 2018. V. 489. P. 6.
  10. Krojanski H.G., Suter D. // Phys. Rev. A. 2006. V. 74. Art. No. 062319.
  11. Saalwächter K., Ziegler P., Spyckerelle O. et al. // J. Chem. Phys. 2003. V. 119. P. 346.
  12. Preskill J. Lecture note for physics 229: Quantum information and computation. Pasadena: California Institute of Technology, 1998. 321 p.
  13. Manzano D. // AIP Advances. 2020. V. 10. Art. No. 025106.
  14. Bengs C., Levitt M.H. // J. Magn. Reson. 2020. V. 310. Art. No. 106645.
  15. Bengs C. // J. Magn. Reson. 2021. V. 322. Art. No. 106868.
  16. Rodin B.A., Abergel D. // Magn. Reson. 2022. V. 3. P. 27.
  17. Низовцев А.П., Килин С.Я. // Изв. РАН. Сер. физ. 2020. T. 84. № 3. C. 310; Nizovtsev A.P., Kilin S.Y. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 235.
  18. Леонтьев А.В., Жарков Д.К., Шмелев А.Г. и др. // Изв. РАН. Сер. физ. 2022. T. 86. № 12. С. 1724; Leontyev A.V., Zharkov D.K., Shmelev A.G. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 1467.
  19. Андрианов С.Н., Калачев А.А., Шиндяев О.П., Шкаликов А.В. // Изв. РАН. Сер. физ. 2020. T. 84. № 3. С. 392; Andrianov S.N., Kalachev A.A., Shindyaev O.P., Shkalikov A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 299.
  20. Харламова Ю.А., Арсланов Н.М., Моисеев С.А. // Изв. РАН. Сер. физ. 2022. T. 86. № 12. С. 1770; Kharlamova Y.A., Arslanov N.M., Moiseev S.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 1507.
  21. Pake G.E. // J. Chem. Phys. 1948. V. 16. P. 327.
  22. McKnett C.L., Dybowski C.R., Vaughan R.W. // J. Chem. Phys. 1975. V. 63. P. 4578.
  23. Doronin S.I., Maksimov I.I., Fel’dman E.B. // J. Exp. Theor. Phys. 2000. V. 91. P. 597.
  24. Casagrande H.P. The density matrix renormalization group applied to open quantum systems. Dissertation for degree of Master of Science. São Paulo: The Physics Institute of the University São Paulo, 2019. 72 p.
  25. Goldman M. Spin temperature and nuclear magnetic resonance in solids. Oxford: Clarendon Press, 1970. 258 p.
  26. Fano U. // Rev. Mod. Phys. 1957. V. 29. P. 74.
  27. Nielsen M., Chuang I. Quantum computation and quantum information. Cambridge: Cambridge University Press, 2010. 676 p.
  28. Fel’dman E.B., Pyrkov A.N. // JETP Lett. 2008. V. 88. P. 398.
  29. Bochkin G.A., Fel’dman E.B., Lazarev I.D. et al.// J. Magn. Reson. 2019. V. 301. P. 10.
  30. Bochkin G.A., Fel’dman E.B., Kuznetsova E.I. et al. // J. Magn. Reson. 2020. V. 319. Art. No. 106816.
  31. Bochkin G.A., Fel’dman E.B., Kiryukhin D.P. et al. // J. Magn. Reson. 2023. V. 350. P. 107415.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Splittings of doublets in 1H NMR spectra of gypsum during sample rotation. Data for two water molecules in the structure are shown by different colors and symbols. Positions investigated in MC experiments are marked by vertical lines.

Download (101KB)
3. Fig. 2. 1H NMR spectra of gypsum obtained at different positions in an external magnetic field.

Download (193KB)
4. Fig. 3. Intensities of MC coherences depending on the duration of the preparatory period of the external Pos3 doublet.

Download (122KB)
5. Fig. 4. Intensities of zero-order MC coherences as a function of the dimensionless parameter Δvτ combined on a common scale for different crystal orientations.

Download (189KB)
6. Fig. 5. Intensities of MC NMR 1H coherences in a gypsum crystal at different orientations corresponding to different splittings, Δv, in the 1H spectra: (a) 89.4 kHz (Pos1), (b) 33.8 kHz (Pos1), (c) 68.5 kHz (Pos2), (d) 63.2 kHz (Pos3), (e) 18 kHz (Pos3), (e) 77.1 kHz (Pos4), (g) 40.7 kHz (Pos4). Theoretical curves for the 0th and 2nd orders are shown as solid lines. The exponential envelope exp(–τ/Tr) is shown as a black solid line for the 0th order coherence.

Download (767KB)

Copyright (c) 2024 Russian Academy of Sciences