Probing open charm production with ALICE-3 detector at high-luminosity Large Hadron Collider

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

ALICE-3 is a future upgrade of the current ALICE experiment to be operated at high-luminosity Large Hadron Collider at CERN after 2030. One of the physics objectives of the experiment is to probe the hot and dense QCD matter produced in heavy-ion collisions via the measurement of open charm hadron production. The ALICE-3 detector is well equipped to measure production of ground and excited states of D-mesons in the decay channels with charged particles in the final state. In this presentation, we present results of feasibility studies for the measurement of open charm mesons in the decay channels with neutral photons or mesons by utilizing the large acceptance electromagnetic calorimeter.

About the authors

M. V. Malaev

B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology

Author for correspondence.
Email: malaev_mv@pnpi.nrcki.ru
Russian Federation, Gatchina, 188300; Dolgoprudny, 141701

V. G. Riabov

B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology

Email: malaev_mv@pnpi.nrcki.ru
Russian Federation, Gatchina, 188300; Dolgoprudny, 141701

References

  1. Власников А.К., Жеребчевский В.И., Лазарева Т.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 614; Vlasnikov A.K., Zherebchevsky V.I., Lazareva T.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 469.
  2. Laermann E., Philipsen O. // Annu. Rev. Nucl. Part. Sci. 2003. V. 53. P. 163.
  3. Иванищев Д.А., Котов Д.О., Малаев М.В. и др.// Изв. РАН. Сер. физ. 2021. Т. 85. № 12. С. 1800; Ivanishchev D.A., Kotov D.O., Malaev M.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1439.
  4. Adcox K., Adler S.S., Afanasiev S. et al. // Nucl. Phys. A. 2005. V. 757. P. 184.
  5. Wang Z.M., Aggarwal M.M, Ahammed Z. et al. // Nucl. Phys. A. 2005. V. 757. P. 102.
  6. Aamodt K., Abrahantes Quintana A., Achenbach R. et al. // JINST. 2008. V. 3. Art. No. S08002.
  7. Abelev B., Adam J., Adamová D. et al. // arXiv: 2211.02491. 2022.
  8. Жеребчевский В.И., Вечернин В.В., Иголкин С.Н. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 702; Zherebchevsky V.I., Vechernin V.V., Igolkin S.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 541.
  9. Malaev M.V., Riabov V.G. // Particles. 2023. V. 6. No. 1. P. 364.
  10. Barnett R.M., Beringer J., Dahl O. et al. // Progr. Theor. Exp. Phys. 2020. V. 2020. Art. No. 083C01.
  11. Sjostrand T., Mrenna S., Skands P.Z. // Comput. Phys. Commun. 2008. V. 178. P. 852.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences