Probing open charm production with ALICE-3 detector at high-luminosity Large Hadron Collider
- Authors: Malaev M.V.1,2, Riabov V.G.1,2
-
Affiliations:
- B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”
- Moscow Institute of Physics and Technology
- Issue: Vol 88, No 8 (2024)
- Pages: 1274-1279
- Section: Fundamental problems and applications of physics of atomic nucleus
- URL: https://edgccjournal.org/0367-6765/article/view/676753
- DOI: https://doi.org/10.31857/S0367676524080182
- EDN: https://elibrary.ru/OPRPFQ
- ID: 676753
Cite item
Abstract
ALICE-3 is a future upgrade of the current ALICE experiment to be operated at high-luminosity Large Hadron Collider at CERN after 2030. One of the physics objectives of the experiment is to probe the hot and dense QCD matter produced in heavy-ion collisions via the measurement of open charm hadron production. The ALICE-3 detector is well equipped to measure production of ground and excited states of D-mesons in the decay channels with charged particles in the final state. In this presentation, we present results of feasibility studies for the measurement of open charm mesons in the decay channels with neutral photons or mesons by utilizing the large acceptance electromagnetic calorimeter.
About the authors
M. V. Malaev
B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology
Author for correspondence.
Email: malaev_mv@pnpi.nrcki.ru
Russian Federation, Gatchina, 188300; Dolgoprudny, 141701
V. G. Riabov
B. P. Konstantinov Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology
Email: malaev_mv@pnpi.nrcki.ru
Russian Federation, Gatchina, 188300; Dolgoprudny, 141701
References
- Власников А.К., Жеребчевский В.И., Лазарева Т.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 614; Vlasnikov A.K., Zherebchevsky V.I., Lazareva T.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 469.
- Laermann E., Philipsen O. // Annu. Rev. Nucl. Part. Sci. 2003. V. 53. P. 163.
- Иванищев Д.А., Котов Д.О., Малаев М.В. и др.// Изв. РАН. Сер. физ. 2021. Т. 85. № 12. С. 1800; Ivanishchev D.A., Kotov D.O., Malaev M.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1439.
- Adcox K., Adler S.S., Afanasiev S. et al. // Nucl. Phys. A. 2005. V. 757. P. 184.
- Wang Z.M., Aggarwal M.M, Ahammed Z. et al. // Nucl. Phys. A. 2005. V. 757. P. 102.
- Aamodt K., Abrahantes Quintana A., Achenbach R. et al. // JINST. 2008. V. 3. Art. No. S08002.
- Abelev B., Adam J., Adamová D. et al. // arXiv: 2211.02491. 2022.
- Жеребчевский В.И., Вечернин В.В., Иголкин С.Н. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 702; Zherebchevsky V.I., Vechernin V.V., Igolkin S.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 541.
- Malaev M.V., Riabov V.G. // Particles. 2023. V. 6. No. 1. P. 364.
- Barnett R.M., Beringer J., Dahl O. et al. // Progr. Theor. Exp. Phys. 2020. V. 2020. Art. No. 083C01.
- Sjostrand T., Mrenna S., Skands P.Z. // Comput. Phys. Commun. 2008. V. 178. P. 852.
Supplementary files
