Superconducting properties of Co1/Cu/Co2/Cu/Pb heterostructure on piezoelectric substrate PMN-PT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the PMN-PT piezoelectric substrate ([Pb(Mg1/3Nb2/3) O3]0.7 — [PbTiO3]0.3) on the superconducting properties of the PMN-PT/Co1/Cu/Co2/Cu/Pb thin-film heterostructure was studied. The change in superconducting transition temperature (Tc) was recorded when an electric field was applied to the PMN-PT substrate and in an external magnetic field. The maximum difference in Tc was 15 mK when an electric field of 1 kV/cm was applied. In an external magnetic field, the maximum difference in Tc was more than 80 mK when the mutual direction of the magnetizations of the ferromagnetic layers changed from parallel/antiparallel to perpendicular.

Full Text

Restricted Access

About the authors

А. А. Kаmаshev

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Author for correspondence.
Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

A. A. Validov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

S. А. Bol’shakov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

N. N. Garif’yanov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

I. A. Gаrifullin

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kazan

References

  1. Oh S., Youm D., Beasley M.R. et al. // Appl. Phys. Lett. 1997. V. 71. P. 2376.
  2. Tagirov L.R. // Phys. Rev. Lett. 1999. V. 83. Art. No. 2058.
  3. Buzdin A.I., Vedyayev A.V., Ryzhanova N.V. // Europhys. Lett. 1999. V. 48. P. 686.
  4. Gu J.Y., You C.Y., Jiang J.S. et al. // Phys. Rev. Lett. 2002. V. 89. Art. No. 267001.
  5. Moraru I.C., Pratt W.P., Birge N.O. // Phys. Rev. Lett. 2006. V. 96. Art. No. 037004.
  6. Potenza A., Marrows C.H. // Phys. Rev. B. 2005. V. 71. Art. No. 180503(R).
  7. Westerholt K., Sprungmann D., Zabel H. et al. // Phys. Rev. Lett. 2005. V. 95. Art. No. 097003.
  8. Steiner R., Ziemann P. // Phys. Rev. B. 2006. V. 74. Art. No. 094504.
  9. Pugach N.G., Kupriyanov M. Yu., Vedyayev A.V. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 134516.
  10. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et al. // Appl. Phys. Lett. 2010. V. 97. Art. No. 102505.
  11. Buzdin A.I. // Rev. Mod. Phys. 2005. V. 77. P. 935.
  12. Blamire M.G., Robinson J.W.A. // J. Phys. Cond. Matter. 2014. V. 26. Art. No. 453201.
  13. Linder J., Robinson J.W.A. // Nature Phys. 2015. V. 11. P. 307.
  14. Bergeret F.S., Volkov A.F., Efetov K.B. // Phys. Rev. Lett. 2001. V. 86. Art. No. 4096.
  15. Eschrig M. // Physics Today. 2011. V. 64. P. 43.
  16. Efetov K.B., Garifullin I.A., Volkov A.F., Westerholt K. Magnetic heterostructures advances and perspectives in spinstructures and spintransport. Springer, 2007.
  17. Фоминов Я.В., Голубов А.А., Карминская Т.Ю. и др. // Письма в ЖЭТФ. 2010. Т. 91. С. 329; Fominov Ya.V., Golubov A.A., Karminskaya T. Yu. et al. // JETP Lett. 2010. V. 91. P. 308.
  18. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et al. // Phys. Rev. Lett. 2012. V. 109. Art. No. 057005.
  19. Wu C.-T., Valls O.T., Halterman K. // Phys. Rev. B. 2012. V. 86. Art. No. 014523.
  20. Banerjee N., Smiet C.B., Smits R. et al. // Nature Commun. 2014. V. 5. Art. No. 3048.
  21. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et al. // Phys. Rev. B2015. V. 91. Art. No. 214508.
  22. Garifullin I.A., Leksin P.V., Garif’yanov N.N. et al. // J. Magn. Magn. Mater. 2015. V. 373. P. 18.
  23. Gu Y., Halász G.B., Robinson J.W.A. et al. // Phys. Rev. Lett. 2015. V. 115. Art. No. 067201.
  24. Singh A., Voltan S., Lahabi K. et al. // J. Phys. Rev. X. 2015. V. 5. Art. No. 021019.
  25. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et al. // Phys. Rev. B. 2016. V. 93. Art. No. 100502(R).
  26. Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1458.
  27. Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // Phys. Rev. B2019. V. 100. Art. No. 134511.
  28. Камашев А.А., Валидов А.А., Гарифьянов Н.Н. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 518; Kamashev A.A., Validov A.A., Garif’yanov N.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 448.
  29. Камашев А.А., Большаков С.А., Мамин Р.Ф. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1268; Kamashev A.A., Bolshakov C.A., Garifullin I.A et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1308.
  30. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // Письма в ЖЭТФ 2019. Т. 110. № 5—6. С. 325 // Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP Lett. 2019. V.110. No. 5. P. 342.
  31. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // ЖЭТФ. 2020. Т. 158. № 2. С. 345. // Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP. 2020. V. 131. No. 2. P. 311.
  32. Kamashev A.А., Garifullin I.A. // Письма в ЖЭТФ 2021. Т. 113. № 3—4. С. 210. // Kamashev A.А., Garifullin I.A. // JETP Lett. 2021. V.113. № 3. No. 3—4. P. 194.
  33. Валидов А.А., Насырова М.И., Хабибуллин Р.Р. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 523; Validov A.A., Nasyrova M.I., Khabibullin R.R. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 452.
  34. Kamashev A.A., Leontyev A.V., Garifullin I.A. et al. // Ferroelectrics 2022. V. 592. P. 123.
  35. Leksin P.V., Kamashev A.A., Schumann J. et al. // Nano Res. 2016. V. 9. P. 1005.
  36. Kamashev A.A., Garif’yanov N.N., Validov A.A. // Magnetism. 2023. V. 3. P. 204.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of the prepared samples with a circuit for measuring electrical resistance, where 1, 4 are current electrodes; 2, 3 are potential electrodes; 5, 6 are capacitive plates (capacitor plates) for applying an electric field to the piezoelectric substrate.

Download (230KB)
3. Fig. 2. Superconducting transition curves for the PMN-PT/Co1(3 nm)/Cu(4 nm)/Co2(1 nm)/Cu(1.2 nm)/Pb(60 nm)/ /Si3N4 sample, measured without an electric field and with an applied electric field of 1 kV/cm.

Download (70KB)
4. Fig. 3. Superconducting transition curves for the PMN-PT/Co1(3 nm)/Cu(4 nm)/Co2(1 nm)/Cu(1.2 nm)/Pb(60 nm)/Si3N4 sample measured at collinear and orthogonal (Tc) orientations of the magnetizations of the F-layers in an external magnetic field of H0 = 1 kOe. The inset shows the dependence of Tc on the angle α between the magnetizations of the F-layers in an external magnetic field of H0 = 1 kOe.

Download (77KB)

Copyright (c) 2024 Russian Academy of Sciences