Features of the temperature dependence of the spectra of spin waves in a thin Pd-Fe film of gradient composition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An epitaxial film of a Pd-Fe alloy with a thickness of 202 nm was synthesized with an iron concentration varying in depth from 2 to 10 at. %. The temperature dependence of the spin-wave resonance spectra was measured in the film. Modeling of the spectra of standing spin waves was carried out. From the correlation of the theoretical spectra with the experimental data, the temperature dependences of the normalized exchange stiffness, the ratio of effective magnetization to saturation magnetization, and the surface spin pinning coefficients were obtained.

Full Text

Restricted Access

About the authors

I. V. Yanilkin

Kazan Federal University; Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Author for correspondence.
Email: yanilkin-igor@yandex.ru

Institute of Physics, Zavoisky Physical-Technical Institute

Russian Federation, Kazan; Kazan

A. I. Gumarov

Kazan Federal University; Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: yanilkin-igor@yandex.ru

Institute of Physics, Zavoisky Physical-Technical Institute

Russian Federation, Kazan; Kazan

B. F. Gabbasov

Kazan Federal University; Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: yanilkin-igor@yandex.ru

Institute of Physics, Zavoisky Physical-Technical Institute

Russian Federation, Kazan; Kazan

R. V. Yusupov

Kazan Federal University

Email: yanilkin-igor@yandex.ru

Institute of Physics

Russian Federation, Kazan

L. R. Tagirov

Kazan Federal University; Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: yanilkin-igor@yandex.ru

Institute of Physics, Zavoisky Physical-Technical Institute

Russian Federation, Kazan; Kazan

References

  1. Chumak A.V., Kabos P., Wu M. et al. // IEEE Trans. Magn. 2022. V. 58. No. 6. P. 1.
  2. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys. Cond. Matter. 2021. V. 33. Art. No. 413001.
  3. Rezende S.M. Fundamentals of magnonics. Springer Nature Switzerland AG, 2020.
  4. Губанов В.А., Кругляк В.В., Садовников А.В. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 417; Gubanov V.A., Kruglyak V.V., Sadovnikov A.V. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 362.
  5. Хутиева А.Б., Акимова В.Р., Бегинин Е.Н. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 792; Khutieva A.B., Akimova V.R., Beginin E.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 697.
  6. Хутиева А.Б., Садовников А.В., Аннненков А.Ю. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 11. С. 1542; Khutieva A.B., Sadovnikov A.V., Annenkov A.Yu. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 11. P. 1205.
  7. Ignatchenko V.A., Tsikalov D.S. // J. Appl. Phys. 2020. V. 127. No. 12. Art. No. 123903.
  8. Ignatchenko V.A., Tsikalov D.S. // J. Magn. Magn. Mater. 2020. V. 510. Art. No. 166643.
  9. Исхаков Р.С., Чеканова Л.А., Важенина И.Г. // Изв. РАН. Сер. физ. 2013. Т. 77. № 10. С. 1469; Iskhakov R.S., Chekanova L.A., Vazhenina I.G. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 10. P. 1265.
  10. Важенина И.Г., Чеканова Л.А., Исхаков Р.С. // Изв. РАН. Сер. физ. 2019. Т. 83. № 6. С. 786; Vazhenina I.G., Chekanova L.A., Iskhakov R.S. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 6. P. 713.
  11. Исхаков Р.С., Столяр С.В., Чеканова Л.А. и др. // ФТТ. 2020. Т. 62. № 10. С. 1658; Iskhakov R.S., Chekanova L.A., Vazhenina I.G. et al. // Phys. Solid State. 2020. V. 62. No. 10. P. 1861.
  12. Yanilkin I.V., Gumarov A.I., Golovchanskiy I.A., et al. // Nanomaterials. 2023. V. 12. No. 24. Art. No. 4361.
  13. Gallardo R.A., Alvarado-Seguel P., Schneider T. et al. // New J. Phys. 2019. V. 21. No. 3. Art. No. 033026.
  14. Ododo J.C. // J. Physics F. 1983. V. 13. No. 6. P. 1291.
  15. Esmaeili A., Yanilkin I.V., Gumarov A.I. et al. // Sci. China Mater. 2021. V. 64. No. 5. P. 1246.
  16. Esmaeili A., Yanilkin I.V., Gumarov A.I. et al. // Thin Solid Films. 2019. V. 669. P. 338.
  17. Yanilkin I., Mohammed W., Gumarov A. et al. // Nanomaterials. 2020. V. 11. No. 1. Art. No. 64.
  18. Golovchanskiy I.A., Yanilkin I.V., Gumarov A.I. et al. // Phys. Rev. Mater. 2022. V. 6. No. 6. Art. No. 064406.
  19. Янилкин И.В., Гумаров А.И., Головчанский И.А. и др. // ЖТФ. 2023. Т. 93. № 2. С. 214; Yanilkin I.V., Gumarov A.I., Golovchanskiy I.A. et al. // Tech. Phys. 2023. V. 68. No. 2. P. 202.
  20. Fallarino L., Riego P., Kirby B.J. et al. // Materials. 2018. V. 11. No. 2. P. 251.
  21. Fallarino L., Quintana M., Rojo E. L. et al. // Phys. Rev. Appl. 2021. V. 16. No. 3. Art. No. 034038.
  22. Quintana M., Meléndez A., Valderrama C. M. et al. // Phys. Rev. Appl. 2022. V. 18. No. 5. Art. No. 054024.
  23. Kuz’min M.D. // Phys. Rev. B. 2008. V. 77. No. 18. Art. No. 184431.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Magnetic hysteresis loops for an inhomogeneous Pd-Fe film obtained at different temperatures in a magnetic field applied along the [110] (a) and [100] (b) directions. Inset: dependence of the coercive field (magnetic field along [110]) on temperature for both an inhomogeneous Pd-Fe film (black triangles) and two homogeneous epitaxial films with different iron concentrations: Pd98Fe2 (pink squares) and Pd92Fe8 (purple circles).

Download (179KB)
3. Fig. 2. Dependence of the average magnetization of the film (a) and the profile of local magnetization inside the film (b) on temperature. Dots are the experiment, lines are the model.

Download (163KB)
4. Fig. 3. Temperature dependence of the spin-wave resonance spectrum (a) and the magnitudes of the resonance field (b) of standing spin waves in a gradient film of Pd-Fe alloy. The temperature changes from 10 to 250 K with a step of 10 K.

Download (366KB)
5. Fig. 4. Upper panel — spin-wave resonance spectra of the Pd-Fe alloy gradient film at different temperatures. Dots — experiment, red lines — model. Lower panel — corresponding distributions of the precession amplitude m(z) over the film thickness. Red dash-dotted line — dependence of potential V on coordinate z.

Download (263KB)
6. Fig. 5. Temperature dependences of the normalized exchange rigidity (a), the ratio of the effective magnetization to the saturation magnetization (b), and the pinning coefficients on the surface and at the ferromagnet/paramagnet interface (c).

Download (154KB)
7. Fig. 6. Dependence of the width at half-maximum of the resonances of the SWS modes of the inhomogeneous Pd-Fe film (solid lines) and the homogeneous Pd94Fe6 film (dash-dotted line) on temperature.

Download (117KB)

Copyright (c) 2024 Russian Academy of Sciences