Nuclear scanning microprobe in the study of silicon carbide epilayers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented the results of the study of surfaces of homoepitaxial 4H-SiC layers using a nuclear scanning microprobe in the Rutherford backscattering mode. Analysis of the state of the sample surfaces and synthesis modes showed that an increase in the silicon (Si) content in the upper layers of some samples precedes the formation of highly defective 4H-SiC layers.

About the authors

M. E. Buzoverya

Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics

Email: dismos51@gmail.com
Russian Federation, Sarov, 607188

I. A. Karpov

Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics

Email: dismos51@gmail.com
Russian Federation, Sarov, 607188

A. Yu. Arkhipov

Russian Federal Nuclear Center — All-Russia Research Institute of Experimental Physics

Email: dismos51@gmail.com
Russian Federation, Sarov, 607188

D. A. Skvortsov

National Research Ogarev Mordovia State University

Author for correspondence.
Email: dismos51@gmail.com

Research Laboratory “Synthesis and Processing of Silicon Carbide Single Crystals”

Russian Federation, Saransk, 430005

V. A. Neverov

National Research Ogarev Mordovia State University

Email: dismos51@gmail.com

Research Laboratory “Synthesis and Processing of Silicon Carbide Single Crystals”

Russian Federation, Saransk, 430005

B. F. Mamin

National Research Ogarev Mordovia State University

Email: dismos51@gmail.com

Research Laboratory “Synthesis and Processing of Silicon Carbide Single Crystals”

Russian Federation, Saransk, 430005

References

  1. Лучинин В.В., Таиров Ю.М. // Изв. вузов. Электроника. 2011. № 6(92). С. 3.
  2. Афанасьев А.В., Ильин В.А., Лучинин В.В., Решанов С.А. // Изв. вузов. Электроника. 2020. Т. 25. № 6. С. 483.
  3. Авров Д.Д., Лебедев А.О., Таиров Ю.М. // Изв. вузов. Электроника. 2015. Т. 20. № 3. С. 225.
  4. Давыдов С.Ю., Лебедев А.А., Савкина Н.С., Волкова А.А. // ЖТФ. 2005. Т. 75. № 4. С. 114; Davydov S.Yu., Lebedev A.A., Savkina N.S., Volkova A.A. // Tech. Phys. 2005. V. 50. No. 4. P. 503.
  5. Schöler M., Schuh P., Steiner J., Wellmann P.J. // Mat. Sci. Forum. 2019. V. 963. P. 157.
  6. Давыдов С.Ю., Лебедев А.А., Савкина Н.С. и др. // ФТП. 2004. Т. 38. № 2. С. 153.
  7. Гаврилов Г.Е., Бузоверя М.Э., Карпов И.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 8. С. 1155; Gavrilov G.E., Buzoverya M.E., Karpov I.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 956.
  8. Lilov S.K. // Mater. Sci. Engin. B. 1993. V. 21. P. 65.
  9. Vasiliauskas R., Marinova M., Hens P. et al. // Cryst. Growth Des. 2012. V.12. P. 197.
  10. Быков Ю.О., Лебедев А.О., Щеглов М.П. // Неорг. матер. 2020. T. 56. № 9. C. 979.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences