Low-energy ternary fission of actinides with nucleons and light charged particles emission

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using formulae for calculating the widths of spontaneous and thermal neutron-induced ternary fission of atomic nuclei with the light charged particles emission, based on the approach to ternary fission as a virtual process, as well as experimental energy distributions of α-particles, hydrogen isotopes and 6He nuclei in ternary fission of actinide nuclei, the probabilities of the third particles formation in the neck of the fissile nucleus, which turn out to be close to each other for (s, f) and (nth, f) fission reactions of the corresponding nuclei, were estimated. It was shown, that the spontaneous and induced ternary fission of the actinide nuclei under consideration with the emission of light charged particles and nucleons comes from close configurations of the fissile nucleus, and the thermal neutron binding energy introduced into the compound fissile nucleus in reactions (nth, f) goes into the deformation energy of the fissile nucleus, and not into the kinetic energy of the third particle.

About the authors

L. V. Titova

Voronezh State University

Author for correspondence.
Email: titova_lv@phys.vsu.ru
Russian Federation, Voronezh, 394006

S. G. Kadmensky

Voronezh State University

Email: titova_lv@phys.vsu.ru
Russian Federation, Voronezh, 394006

Ya. O. Otvodenko

Voronezh State University

Email: titova_lv@phys.vsu.ru
Russian Federation, Voronezh, 394006

E. S. Petrykina

Voronezh State University

Email: titova_lv@phys.vsu.ru
Russian Federation, Voronezh, 394006

References

  1. Halpern I. // Annu. Rev. Nucl. Sci. 1971. V. 21. P. 2.
  2. Tsang C.F. // Phys. Scripta A. 1974. V. 10. P. 90.
  3. Кадменский С.Г., Кадменский С.С., Любашевский Д.Е. // Ядерн. физика. 2010. Т. 73. № 8. С. 1481; Kadmensky S.G., Kadmensky S.S., Lyubashevsky D.E. // Phys. Atom. Nucl. 2010. V. 73. No. 8. P. 1436.
  4. Рубченя В.А. // Ядерн. физика. 1982. Т. 35. С. 576.
  5. Tanimura O., Fliessbach T. // Z. Physik. 1987. V. 328. P. 475.
  6. Кадменский С.Г., Титова Л.В., Любашевский Д.Е. // Ядерн. физика. 2020. Т. 83. № 4. С. 326; Kadmensky S.G., Titova L.V., Lyubashevsky D.E. // Phys. Atom. Nucl. 2020. V. 83. No. 4. P. 581.
  7. Титова Л.В. // Вестн. Моск. ун-та. Сер. 3. Физика. 2021. № 5. С. 64.
  8. Mutterer M., Theobald J.P. Dinuclear decay modes. Chap. 12. Bristol: IOP Publ., 1996.
  9. Vermote S., Wagemans C., Serot O. et al. // Nucl. Phys. A. 2010. V. 837. P. 176.
  10. Vermote S., Wagemans C., Serot O. // Nucl. Phys. 2008. V. 806. P. 1.
  11. Mutterer M., Kopatch Yu.N., Jesinger P. et al. // Nucl. Phys. 2004. V. 738. P. 122.
  12. Serot O., Wagemans C., Heyse J. // AIP Conf. Proc. 2005. V. 769. P. 857.
  13. Nowicki L., Piasecki E., Sobolevsli J. et al. // Nucl. Phys. A. 1982. V. 375. P. 18
  14. Гамов Г. // УФН. 1930. Т. 10. № 4. С. 531.
  15. Wagemans C., D’hondt P., Schillebeeckx P., Brissot R. // Phys. Rev. C. 1986. V. 33. P. 943.
  16. Кадменский С.Г., Фурман В.И. Альфа-распад и родственные ядерные реакции. М.: Энергоатомиздат, 1985.
  17. Кадменский С.Г., Куфаев С.В., Отводенко Я.О. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1332; Kadmensky S.G., Kufaev S.V., Otvodenko Ya.O. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1102.
  18. Chwaszczewska J. // Phys. Lett. B. 1967. V.24. P. 87.
  19. Воробьев А.С., Щербаков О.А., Гагарский А.М. и др. // ЖЭТФ. 2017. Т. 152. № 4. P. 730; Vorobyev A.S., Shcherbakov O.A., Gagarsky A.M. et al. // JETP. 2017. V. 125. No. 4. P. 619.
  20. Воробьев А.С., Щербаков О.А., Гагарский А.М. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 10. С. 1373; Vorobyev A.S., Shcherbakov O.A., Gagarsky A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 10. P. 1245.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences