Magnetization of a system of high-spin ions in zero magnetic field with microwave pulses at finite temperatures

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Resonant microwave pulses have been shown to be able to create magnetization of high-spin (S ≥ 1) metal ions even in the absence of an external magnetic field. This transformation of the spin states of ions is like the “alignment–orientation” transition in atomic spectroscopy. These manipulations make it possible to translate the results of elementary quantum computing operations performed in zero magnetic fields into physically observable quantities.

Full Text

Restricted Access

About the authors

M. R. Arifullin

Orenburg State University

Author for correspondence.
Email: arifullinm@mail.ru
Russian Federation, Orenburg

V. L. Berdinskiy

Orenburg State University

Email: arifullinm@mail.ru
Russian Federation, Orenburg

References

  1. Арифуллин М.Р., Бердинский В.Л. // ФТТ. 2020. № 3. С. 390; Arifullin M.R., Berdinskiy V.L. // Phys. Solid State. 2020. V. 62. No. 3. P. 440.
  2. Арифуллин М.Р., Бердинский В.Л. // Изв. вузов. Физика. 2020. Т. 63. № 5. С. 159; Arifullin M.R., Berdinskiy V.L. // Russ. Phys. J. 2020. V. 63. No. 5. P. 888.
  3. Arifullin M.R., Berdinskiy V.L. // AIP Conf. Proc. 2020. V. 2241. No. 1. Art. No. 020001.
  4. Альтшулер С.А., Козырев Б.M. Электронный парамагнитный резонанс соединений элементов промежуточных групп. М.: Наука, 1972. 672 c.
  5. Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных металлов. М.: Наука, 1972. 651 c.
  6. Nielsen M.A., Chuang I.L. Quantum computation and quantum information. Maidenhead: Cambridge University Press, 2000. 700 p.
  7. Zorin A.B. // ЖЭТФ. 2004. Т. 125. № 6. С. 1423; Zorin A.B. // JETP. 2004. V. 98. No. 6. P. 1250.
  8. Gershenfeld N.A., Chuang I.L. // Science. 1997. V. 275. P. 350.
  9. Loss D., DiVincenzo D.P. // Phys. Rev. A. 1998. V. 57. P. 120.
  10. DiCarlo L., Chow J.M., Gambetta J.M. et al. // Nature. 2009. V. 260. P. 240.
  11. Mooij J.E., Orlando T.P., Levitov L. et al. // Science. 1999. V. 285. P. 1036.
  12. Imamoglu A., Awschalom D.D., Burkard G. et al. // Phys. Rev. Lett. 1999. V. 83. No. 20. P. 4204.
  13. Cirac I.J., Zoller P. // Phys. Rev. Lett. 1995. V. 74. No. 20. P. 4091.
  14. Kawakami E., Chen J., Benito M., Konstantinov D. // Phys. Rev. Appl. 2023. V. 20. Art. No. 054022.
  15. Моисеев С.А., Перминов Н.C. // Письма в ЖЭТФ. 2020. Т. 111. № 9. С. 602; Moiseev S.A., Perminov N.S. // JETP Lett. 2020 V. 111. No. 9. P. 500.
  16. Миннегалиев М.М., Герасимов К.И., Моисеев С.А. // Письма в ЖЭТФ. 2023. Т. 117. № 11. С. 867; Minnengaliev M., Gerasimov K., Moiseev S. // JETP Lett. 2023. V. 117. No. 11. P. 865.
  17. Харламова Ю.А., Арсланов Н.М., Моисеев С.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1770; Kharlamova Yu.A., Arslanov N.M., Moiseev S.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1507.
  18. Harwey A.F. Microwave engineering. London and New York: Academic Press, 1963. 1313 p.
  19. Каллас Х., Чайка М.П. // Опт. и спектроск. 1969. Т. 27. С. 694.
  20. Джиоев Р.И., Захарченя Б.П., Ивченко Е.Л. и др. // ФТТ. 1998. Т. 40. № 9. C. 5; Dzhioev R.I., Zakharchenya B.P., Korenev V.L. et al. // Phys. Solid State. 1998. V. 40. No. 9. P. 1587.
  21. Чайка М.П. Интерференция вырожденных атомных состояний. Л.: Изд-во ЛГУ, 1975. 192 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences