Hardware implementation and testing of 4-channel fast electronics for a MCP detector

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the Quartus software environment, simulation of time measurements for a fast collision monitor of particle beams based on chevron MCP assemblies was carried out. The measurement algorithm is based on the delayed coincidence method. 4-channel electronics for a detector on microchannel plates (MCP) based on high-speed comparators and FPGA EPM240 from ALTERA have been created. The test prototype was tested using a 4-channel nanosecond pulse generator, with an adjustable delay between channels. When using these comparators and FPGAs, it is possible to determine the time of registration of particles by a detector with an error of 100 ps, while the calculated speed of the reading circuit coincides with the measured one and is no more than 10 ns for each event for a 4-channel system.

About the authors

F. F. Valiev

Saint-Petersburg State University

Email: n.a.makarov@mail.spbu.ru
Russian Federation, St. Petersburg, 199034

N. I. Kalinichenko

Saint-Petersburg State University

Email: n.a.makarov@mail.spbu.ru
Russian Federation, St. Petersburg, 199034

N. A. Makarov

Saint-Petersburg State University

Author for correspondence.
Email: n.a.makarov@mail.spbu.ru
Russian Federation, St. Petersburg, 199034

G. A. Feofilov

Saint-Petersburg State University

Email: n.a.makarov@mail.spbu.ru
Russian Federation, St. Petersburg, 199034

References

  1. Колесников В.И., Зинченко А.И., Васендина В.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 4. С. 575; Kolesnikov V.I., Zinchenko A.I., Vasendina V.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 4. P. 451.
  2. Жеребчевский В.И., Мальцев Н.А., Нестеров Д.Г. и др. // Изв. РАН. Сер. физ. 2022. T. 86. № 8. C. 1146; Zherebchevsky V.I., Maltsev N.A., Nesterov D.G. et al. // Bull. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 948.
  3. Baldin A.A et al. // Nucl. Instrum. Meth. Phys. Res. A. 2020. V. 958. Art. No. 162154.
  4. Сандул В.C., Феофилов Г.А., Валиев Ф.Ф. // ЭЧАЯ. 2023. Т. 54. № 4. C. 848.
  5. Галактионов К., Руднев В., Валиев Ф. // ЭЧАЯ. 2023. Т. 54. № 3. C. 560.
  6. Беспалько В.А. // ПТЭ. 2009. № 2. С. 57.
  7. Будагов Ю.А., Семан М., Ситар Б. и др. Преобразователь время-код с наносекундным разрешением. Препринт ОИЯИ 13—84—395. Дубна, 1984.
  8. Абрамов Г.Н. Рециркуляционно-нониусный время-цифровой преобразователь. Патент РФ № 2730125 C1. 2020.
  9. Гурин Е.И., Коннов Н.Н., Механов В.Б., Попов К.В. // ПТЭ. 1997. № 3. С. 102.
  10. Букин М.А., Титов В.М. Время-цифровой преобразователь с наносекундным разрешением на основе ПЛИС Altera. Новосибирск: Ин-т ядерн. физики имени Г.И. Будкера СО РАН, 2001.
  11. Sanoa Y., Horiia Y., Ikenob M. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2017. V. 874. P. 50.
  12. Liu C., Wang Y. // IEEE Trans. Nucl. Sci. 2015. V. 62. No 3.
  13. https://www.intel.ru/content/www/ru/ru/software/programmable/quartus-prime/overview.html

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences