Viscous friction in a coaxial layer of magnetic fluid under uniform translational motion of walls

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Viscous friction of a magnetic fluid in a coaxial gap between a stationary nonmagnetic tube wall and a translational moving permanent magnet was investigated experimentally and theoretically. An analytical expression for the effective friction coefficient, confirmed in a laboratory experiment, was proposed in the framework of the model concepts of the Couette-Poiseuille flow profile with zero flow rate.

Full Text

Restricted Access

About the authors

А. S. Ivanov

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: lesnichiy@icmm.ru

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Russian Federation, Perm

М. A. Koskov

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: lesnichiy@icmm.ru

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Russian Federation, Perm

S. А. Somov

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: lesnichiy@icmm.ru

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Russian Federation, Perm

References

  1. Розенцвейг Р. Феррогидродинамика. М.: Мир, 1989, 356 с.
  2. Бибик Е.Е., Лавров И.С. Способ получения феррожидкости. Патент СССР № 457666. 1972.
  3. Иванова А.В., Никитин А.А., Абакумов М.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1580.
  4. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  5. Bailey R.L. // J. Magn. Magn. Mater. 1983. V. 39. No. 1. P. 178.
  6. Фертман В.Е. Магнитные жидкости: справочное пособие. Минск, 1988. 184 с.
  7. Quan L., Li D. // J. Sensors. 2014. V. 2014. P. 9.
  8. Rosensweig R.E. // Nature. 1966. V. 210. P. 613.
  9. Evans K.S. Accelerometer incorporating fluid suspended magnet. UK Patent No. 2241785A. 1991.
  10. Takaharu I. Acceleration sensor. EP Patent No. 0293784B1. 1994.
  11. Pristup A.G., Romanov Yu.I. Accelerometer incorporating fluid suspended magnet. EP Patent No. 1640724A1. 2005.
  12. Simonenko D.V., Suprin A.E., Romanov Yu.I. Magnetofluidic accelerometer with active suspension. US Patent No. 0059990A1. 2006.
  13. Pshenichnikov A.F., Ivanov A.S. // Phys. Rev. E. 2012. V. 86. Art. No. 051401.
  14. Ряполов П.А., Полунин В.М., Баштовой В.Г. и др. // Изв. Юго-Запад. гос. ун-та. Сер.: Техн. и технол. 2020. Т. 10. № 4. С. 92.
  15. Ряполов П.А., Полунин В.М., Баштовой В.Г. и др. // Изв. Юго-Запад. гос. ун-та. Сер.: Техн. и технол. 2021. Т. 11. № 1. С. 75.
  16. Raj K. Ferrofluid sensor. DE, FR, UK, IT, SE Patent No. 0857945B1. 1998.
  17. Pristup A.G. Magnetofluidic unidirectional accelerometer. US Patent No. 0214889A1. 2007.
  18. Сайкин М.С., Марков М.Г., Федосеева В.П. Устройство для измерения вибраций. Патент РФ № 198257. 2020.
  19. Raj K., Ionescu C. Ferrofluid inclinometer. Patent US No. 5452520A. 1995.
  20. Сайкин М.С., Морозова Д.Ю. Магнитожидкостное устройство для определения угла наклона. Патент РФ № 166054. 2016.
  21. Смайт В. Электростатика и электродинамика, М.: Изд-во иностранной лит-ры, 1954. 606 с.
  22. Lagutkina D. Yu., Saikin M.S. // J. Magn. Magn. Materi. 2017. V. 431. P. 149.
  23. Ryapolov P.A., Bashtovoi V.G., Reks A.G. et al. // IEEE Magn. Lett. 2020. V. 11. P. 1.
  24. Бендриков Г.А., Иванов И.В., Карасев М.Д. и др. Теория колебаний. М.: Изд-во МГУ, 1983. 328 с.
  25. Косков М.А., Иванов А.С. // Вестн. Иванов. гос. энерг. ун-та. 2022. № 6. С. 26.
  26. Иванов А.С., Косков М.А. Магнитожидкостное устройство для измерения линейных ускорений и угла наклона. Патент РФ № 2788591C1. 2023.
  27. Берковский Б.М., Медведев В.Ф., Краков М.С. Магнитные жидкости. М.: Химия, 1989.
  28. Krakov M.S., Nikiforov I.V. // Technical Phys. 2011. V. 56. No. 12. P. 1745.
  29. Сайкин М.С. // Вестн. Иванов. гос. энерг. ун-та. 2010. № 4. С. 44.
  30. Sharova O.A., Merkulov D.I., Pelevina D.A. et al. // Phys. Fluids. 2021. V. 33. No. 8. Art. No. 087107.
  31. Пшеничников А.Ф., Лебедев А.В., Радионов А.В. и др. // Коллоид. журн. 2015. Т. 77. № 2. С. 207; Pshenichnikov A.F., Lebedev A.V., Radionov A.V. et al. // Colloid J. 2015. V. 77. No. 2. P. 196.
  32. Pshenichnikov A.F., Mechonoshin V.V., Lebedev A.V. // J. Magn. Magn. Mater. 1996. V. 161. P. 94.
  33. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988. 736 с.
  34. Шлихтинг Г. Теория пограничного слоя. М.: Изд-во иностранной лит-ры, 1956. 528 с.
  35. Shliomis M.I. // Sov. Phys. Usp. 1974. V. 17. P. 153.
  36. Акимов М.Л., Поляков П.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 2. С. 192; Akimov M.L., Polyakov P.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 82. No. 2. P. 151.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup (a). The coaxial gap between the magnet and the tube filled with magnetic fluid with the direction of the main forces indicated (b).

Download (311KB)
3. . 2. Magnetic bodies in axial section (dimensions in millimeters) on the left and a photograph of magnetic bodies on the right.

Download (356KB)
4. Fig. 3. Temperature dependence of MF viscosity. Points — experiment, solid lines — Arrhenius approximation (a). MF magnetization curves (b). Points — experiment, solid curve — spline interpolation. Curve numbering corresponds to the notations in Table 1.

Download (78KB)
5. Fig. 4. Oscillogram of the signal B(t) from the Hall sensors in the experiment with a magnetic body (Fig. 2c) (a), covered with MF No. 1; the same in the experiment with the body (Fig. 2d) (b).

Download (87KB)
6. Fig. 5. Profile of the flow velocity of the magnetic fluid in a coaxial gap (a) and the dependence of the friction coefficient (in units of ηℓ / m) on the ratio of the radii of the walls of the coaxial gap R2 = r2 / r1 (b).

Download (135KB)
7. Fig. 6. Laboratory measurements of the average velocity of fall of magnetic bodies consisting of two disk magnets with a non-magnetic insert (Fig. 2b) coated with MF No. 1 (a); a body consisting of two cylindrical magnets with an aluminum insert (Fig. 2c) coated with MF Nos. 1 and 2 (b); a body consisting of 16 ring magnets with non-magnetic inserts (Fig. 2d) coated with MF No. 1 (c). Confidence intervals correspond to the standard deviation of velocity δυ. Horizontal line — calculation using formula (13). Average velocity of movement and mass of the MF layer in the tube depending on the number of experiments performed (d).

Download (262KB)

Copyright (c) 2024 Russian Academy of Sciences