Features of the behavior of the superconducting spin valve Fe1/Cu/Fe2/Cu/Pb on a piezoelectric substrate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The properties of the superconducting spin valve Fe1/Cu/Fe2/Cu/Pb on a piezoelectric substrate PMN-PT ([Pb(Mg1/3Nb2/3) O3]0.7 — [PbTiO3]0.3) in external magnetic and electric fields are studied. The magnitude of the shift of the superconducting transition temperature more than 200 mK was found when the mutual orientation of the magnetizations of the ferromagnetic layers changes from antiparallel to perpendicular in the magnetic field H0 = 1 kOe. In this case, an anomalous behavior of the dependence of superconducting transition temperature on the angle between the magnetizations of the ferromagnetic layers was detected, which manifested itself in the maximum values of superconducting transition temperature at an orthogonal orientation of the magnetizations of the ferromagnetic layers. The full effect of the superconducting spin valve was observed. It has been established that with an increase in the applied electric field to the PMN-PT piezoelectric substrate, the shift of the superconducting transition temperature increases. The maximum shift was 10 mK at an electric field strength of 1 kV/cm.

Full Text

Restricted Access

About the authors

А. А. Kаmаshev

Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kаzаn

A. A. Validov

Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kаzаn

N. N. Garif’yanov

Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kаzаn

S. А. Bolshakov

Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kаzаn

R. F. Mamin

Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kаzаn

I. A. Gаrifullin

Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences

Email: kаmаndi@mаil.ru

Zavoisky Physical-Technical Institute

Russian Federation, Kаzаn

References

  1. Bulaevskii L.N., Buzdin A.I., Kuli´c M.L. et al. // Adv. Phys. 1985. V. 34. No 2. P. 175.
  2. Fischer O., Peter M. Magnetism: Magnetic properties of metallic alloys. Recent work on ferromagnetic superconductors. New York: Academic Press Inc., 1973.
  3. Rehmann S., Herrmannsdörfer T. // Phys. Rev. Lett. 1997. V. 78. No. 6. P. 1122.
  4. Garifullin I.A. // J. Magn. Magn. Mater. 2002. V. 240. P. 571.
  5. Chien C.L., Reich D.H. // J. Magn. Magn. Mater. 1999. V. 200. P. 83.
  6. Изюмов Ю.А., Прошин Ю.Н., Хусаинов М.Г. // УФН. 2002. Т. 172. № 2. С. 113.
  7. Buzdin A.I. // Rev. Mod. Phys. 2005. V. 77. No. 3. P. 935.
  8. Golubov A.A., Kupriyanov M.Y., Il’ichev E. // Rev. Mod. Phys. 2004. V. 76. No. 2. P. 411.
  9. Efetov K.B., Garifullin I.A., Volkov A.F., Westerholt K. // Magnetic heterostructures. Advances and perspectives in spinstructures and spintransport. Series Springer Tracts in Modern Physics. Berlin: Springer, 2007. 252 p.
  10. Bergeret F.S., Volkov A.F., Efetov K.B. // Rev. Mod. Phys. 2005. V. 77. P. 1321.
  11. Oh D., Youm S., Beаsley M.R. // Аppl. Phys. Lett. 1997. V. 71. Nо. 16. P. 2376.
  12. Tаgirоv L.R. // Physiса С. 1998. V. 307. P. 145.
  13. Buzdin A.I., Vedyayev A.V., Ryzhanova N.V. // Europhys. Lett. 1999. V. 48. No. 48. P. 686.
  14. Baladi´e I., Buzdin A.I., Ryazhanov N. et al. // Phys. Rev. B. 2000. V. 63. Art. No. 054518.
  15. Gu J.Y., You C.Y., Jiang J.S. et al. // Phys. Rev. Lett. 2002. V. 89. Аrt. Nо. 267001.
  16. Potenza A., Marrows C.H. // Phys. Rev. B. 2005. V. 71. Аrt. Nо. 180503.
  17. Moraru I.C., Pratt Jr. W.P., Birge N.O. // Phys. Rev. Lett. 2006. V. 96. Аrt. Nо. 037004.
  18. Miao G.-X., Ramos A.V., Moodera J. // Phys. Rev. Lett. 2008. V. 101. Аrt. Nо. 137001.
  19. Leksin P.V., Gаrif’yаnоv N.N., Gаrifullin I.А. et аl. // Аppl. Phys. Lett. 2010. V. 97. Аrt. Nо. 102505.
  20. Blamire M.G., Robinson J.W.A. // J. Phys. Cond. Matter. 2014. V. 26. Аrt. Nо. 453201.
  21. Eschrig M. // Rep. Progr. Phys. 2015. V. 78. Аrt. Nо. 104501
  22. Grein R., Löfwander T., Eschrig M. // Phys. Rev. B. 2013. V. 88. Аrt. Nо. 054502.
  23. Flokstra M.G., Cunningham T.C., Kim J. et аl. // Phys. Rev. B. 2015. V. 91. Аrt. Nо. 060501.
  24. Montiel X., Eschrig M. // Phys. Rev. B. 2018. V. 98. No. Аrt. Nо. 104513.
  25. Banerjee N., Ouassou J.A., Zhu Y. et аl. // Phys. Rev. B. 2018. V. 97. Аrt. Nо. 184521.
  26. Pugach N., Safonchik M., Belotelov V. et аl. // Phys. Rev. Appl. 2022. V. 18. Аrt. Nо. 054002.
  27. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et аl. // Phys. Rev. Lett. 2012. V. 109. Аrt. Nо. 057005.
  28. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et аl. // Phys. Rev. B. 2016. V. 93. Аrt. Nо. 100502
  29. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et аl. // Phys. Rev. B. 2015. V. 91. Аrt. Nо. 214508.
  30. Камашев А.А., Валидов А.А., Гарифьянов Н.Н. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 518; Kamashev A.A., Validov A.A., Garif’yanov N.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 448.
  31. Камашев А.А., Большаков С.А., Мамин Р.Ф., Гарифуллин И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1268; Kamashev A.A., Bolshakov S.A., Mamin R.F., Garifullin I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1308.
  32. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // Письма в ЖЭТФ 2019. Т. 110. № 5—6. С. 325; Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP Lett. 2019. V. 110. No. 5. P. 342.
  33. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // ЖЭТФ. 2020. Т. 158. № 2. С. 345. // Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP. 2020. V. 131. No. 2. P. 311.
  34. Валидов А.А., Насырова М.И., Хабибуллин Р.Р., Гарифуллин И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 523; Validov A.A., Nasyrova M.I., Khabibullin R.R., Garifullin I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 452.
  35. Bergeret F.S., Volkov A.F., Efetov K.B. // Phys. Rev. Lett. 2001. V. 86. Аrt. Nо. 4096.
  36. Volkov A.F., Bergeret F.S., Efetov K.B. // Phys. Rev. Lett. 2003. V. 90. Аrt. Nо. 117006.
  37. Mel’nikov A.S., Samokhvalov A.V., Kuznetsova S.M. et аl. // Phys. Rev. Lett. 2012. V. 109. Аrt. Nо. 237006.
  38. Efetov K.B., Garifullin I.A., Volkov A.F., Westerholt K. // Magnetic nanostructures. Spin dynamic and spin transport. Series Springer Tracts in Modern Physics. Berlin: Springer-Verlag, 2013. P. 85.
  39. Singh А., Vоltаn S., Lаhаbi K., Ааrts J. // Phys. Rev. X. 2015. V. 5. Аrt. Nо. 021019.
  40. Kаmаshev А.А., Gаrif’yаnоv N.N., Vаlidоv А.А. et аl. // Beilstein J. Nаnоteсhnоl. 2019. V. 10. P. 1458.
  41. Kаmаshev А.А., Gаrif’yаnоv N.N., Vаlidоv А.А. et аl. // Phys. Rev. B. 2019. V. 100. Аrt. Nо. 134511.
  42. Kamashev A.A., Leontyev A.V., Garifullin I.A. et al. // Ferroelectrics. 2022. V. 592. No. 1. P. 123.
  43. Zhang W., Wang Z., Yang X. et аl. // J. Cryst. Growth. 2021. V. 560—561. Аrt. Nо. 126061.
  44. Zhang Z., Xu J., Yang L. et аl. // Sens. Actuators A. 2018. V. 283. P. 273
  45. Song H.-C., Kang C.-Y., Yoon S-Y et аl. // Single Crystals. Met. Mater. Int. 2012. V. 18. P. 499.
  46. Leksin P.V., Kamashev A.A., Schumann J. et аl. // Nano Research. 2016. V. 9. P. 1005.
  47. Fоminоv Yа.V., Gоlubоv А.А., Kаrminskаyа T. Yu. et al. // Письма в ЖЭТФ. 2010. Т. 91. С. 329.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model of the studied structures of the SSC (a). Scheme of measuring the specific electrical resistance of samples by the standard four-contact method in an electric field (b): 1, 4 — current electrodes; 2, 3 — potential electrodes; 5, 6 — capacitive plates (capacitor plates) for applying an electric field to the piezoelectric substrate.

Download (362KB)
3. Fig. 2. Superconducting transition curves for the PMN-PT/Fe1(3 nm)/Cu(4 nm)/Fe2(1 nm)/Cu(1.2 nm)/Pb(60 nm) sample, measured at different orientations of the magnetizations of the F-layers (P – α = 0°; PP — α = 90°; AP — α = 180°) in an external magnetic field H0 = 1 kOe. The experimental error corresponds to the size of the symbols.

Download (81KB)
4. Fig. 3. Dependence of the Tc shift (ΔTc΄) on the strength of the external electric field (E) applied to the PMN-PT piezoelectric substrate for the PMN-PT/Fe1(3 nm)/Cu(4 nm)/Fe2(1 nm)/Cu(1.2 nm)/Pb(60 nm) sample. The inset shows the superconducting transition curves for the PMN-PT/Fe1(3 nm)/Cu(4 nm)/Fe2(1 nm)/Cu(1.2 nm)/Pb(60 nm) sample when an electric field is applied to the PMN-PT piezoelectric substrate. The experimental error corresponds to the size of the symbols.

Download (80KB)

Copyright (c) 2024 Russian Academy of Sciences