Multi-threshold character of spontaneous heterogeneous boiling-up of superheated liquid in a glass tube

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of experimental investigations is presented, in which the kinetics of spontaneous heterogeneous boiling-up of superheated n-pentane in two glass tubes has been studied. It has been established that isobaric temperature dependences of the mean lifetime of a superheated liquid obtained under similar conditions have threshold values in the temperature range of 100–115, 120–125 and 130–140 °C.

Full Text

Restricted Access

About the authors

M. A. Parshakova

The Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: parmari@yandex.ru
Russian Federation, Екатеринбург

E. B. Lipnyagov

The Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences

Email: parmari@yandex.ru
Russian Federation, Yekaterinburg

References

  1. Скрипов В.П. Метастабильная жидкость. M: Наука, 1972. 312 с.
  2. Blander M., Katz J.L. // AIChE Journal. 1975. V. 21. No. 5. P. 833.
  3. Скрипов В.П., Синицын Е.Н., Павлов П.А. и др. Теплофизические свойства жидкостей в метастабильном состоянии. М: Атомиздат, 1980. 208 c.
  4. Avedisian C.T. // J. Phys. Chem. Ref. Data. 1985. V. 14. No. 3. P. 695.
  5. Debenedetti P.G. Metastable Liquids. Princeton: Princeton University Press, 1996. 424 p.
  6. Ермаков Г.В. Термодинамические свойства и кинетика вскипания перегретых жидкостей. Екатеринбург: УрО РАН, 2002. 272 с.
  7. Perminov S.A., Lipnyagov E.V., Parshakova M.A. // J. Phys. Conf. Ser. 2021. V. 2039. Art. No. 012027.
  8. Паршакова М.А., Липнягов Е.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 2. С. 215; Parshakova M.A., Lipnyagov E.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 2. P. 158.
  9. Липнягов Е.В., Паршакова М.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 2. C. 221; Lipnyagov E.V., Parshakova M.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 2. P. 164.
  10. Lipnyagov E.V., Parshakova M.A. // Int. J. Heat Mass Trans. 2022. V. 196. Art. No. 123254.
  11. Паршакова М А., Липнягов Е.В. // Изв. РАН. Сер. физ. 2023. Т. 87. № 11. C. 1554; Parshakova M.A., Lipnyagov E.V. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1586.
  12. Lipnyagov E.V., Parshakova M.A. // Int. J. Heat Mass Trans. 2024. V. 218. Art. No. 124811.
  13. Lipnyagov E.V., Gurashkin A.L., Starostin A.A., Skripov P.V. // J. Eng. Thermophys. 2018. V. 27. No. 3. P. 307.
  14. Ermakov G.V., Lipnyagov E.V., Perminov S.A., Gurashkin A.L. // J. Chem. Phys. 2009. V. 131. No. 3. Art. No. 031102.
  15. Eрмаков Г.В., Липнягов Е.В., Перминов С.А. // Теплофиз. и аэромех. 2012. Т. 19. № 6. С. 769; Ermakov G.V., Lipnyagov E.V., Perminov S.A. // Thermophys. Aeromech. 2012. V. 19. No. 4. P. 667.
  16. Липнягов Е.В., Ермаков Г.В., Перминов С.А. // Труды РНКТ-3. Т. 1. М.: Изд-во МЭИ, 2002. С. 80.
  17. Кутателадзе С.С., Накоряков В.Е. Тепломассообмен и волны в газожидкостных системах. Новосибирск: Наука, 1984. 301 с.
  18. Смирнов Б.М. Физика фрактальных кластеров. М.: Наука, 1991. 133 с.
  19. Chukanov V.N. // J. Chem. Phys. 1985. V. 83. No. 4. P. 1902.
  20. Chukanov V.N., Korobitsyn B.A. // J. Eng. Thermophys. 2007. V. 16. No. 3. P. 192.
  21. Lipnyagov E.V., Parshakova M.A., Perminov S.A. // Int. J. Heat Mass Trans. 2017. V. 104. P. 1353.
  22. Дан П.Д., Рей Д.А. Тепловые трубы. М.: Энергия, 1979. 272 c.
  23. Lipnyagov E.V., Parshakova M.A., Perminov S.A. // Int. J. Heat Mass Trans. 2017. V. 104. P. 1362.
  24. Падерин И.М., Усков В.С., Ермаков Г.В. // ТВТ. 1994. Т. 34. № 6. С. 863; Paderin I.M., Uskov V.S., Ermakov G.V. // High Temp. 1994. V. 32. No. 6. P. 806.
  25. Lipnyagov E.V., Parshakova M.A., Perminov S.A., Ermakov G.V. // Int. J. Heat Mass Trans. 2013. V. 61. No. 1. P. 612.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of the new experimental setup (a) and a photograph of the thermostatic cell with a coolant (PMS-20) and a glass tube (b).

Download (37KB)
3. Fig. 2. Average lifetime of superheated n-pentane depending on temperature at atmospheric pressure: 1–5 – experiment; 6 – data [24], D = 7 mm, V0 = 2.7 ∙ 10–6 m3; 1–2 – the upper part of tube 1 is thermostatted, D = 5.6 mm, V0 = 2.8 ∙ 106 m3 [7–10, 12]; 3–5 – the middle of tube 2, D = 5.6 mm, V0 = 2.6 ∙ 106 m3.

Download (19KB)
4. Fig. 3. Selected histograms of the distribution of the lifetime of superheated n-pentane in a glass tube (D = 5.6 mm, V0 = 2.6 ∙ 106 m3) at different temperatures: solid line – exponential distribution.

Download (30KB)
5. Fig. 4. Storyboards of the onset of boiling of superheated n-pentane in a glass tube (1, 2) (projection C2), synchronized with the data of the Sendo Sensor SS312 pressure sensor (3, 4) and the time dependences of the height difference Dh (5, 6): (a) fast growth of the vapor phase; (b) slow growth. Time between frames: (a) 1; (b) 8 ms. The parameters of the experiments and approximations of some sections of the Dh(t) dependence are given in Tables 1 and 2.

Download (47KB)

Copyright (c) 2024 Russian Academy of Sciences