The effect of structural differences of dimethylamine-substituted styrene dyes of the pyridine and quinoline series on the nonlinearity of the 2nd and 3rd order in their microcrystalline powders

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spectral behavior of a styrene dye of the quinoline series of type D-p-A in solvents of various natures has been studied, pronounced solvatochromism and sensitivity to the viscosity of the medium have been found. Studies of microcrystalline dye powder by laser radiation on chromium-forsterite with a wavelength of 1250 nm have been carried out. The observed differences in the nonlinearity of the 2nd order are correlated with the structural differences of analog compounds, as well as with the factors organizing the supramolecular system in the crystal.

Full Text

Restricted Access

About the authors

E. S. Medyantsev

National Research Centre "Kurchatov Institute"; Moscow Institute of Physics and Technology

Author for correspondence.
Email: evgenkupffer@gmail.com

Центр фотохимии Курчатовского комплекса кристаллографии и фотоники

Russian Federation, Moscow; Dolgoprudny

N. A. Lobova

National Research Centre "Kurchatov Institute"; Moscow Institute of Physics and Technology

Email: evgenkupffer@gmail.com

Центр фотохимии Курчатовского комплекса кристаллографии и фотоники

Russian Federation, Moscow; Dolgoprudny

A. V. Koshkin

National Research Centre "Kurchatov Institute"

Email: evgenkupffer@gmail.com

Центр фотохимии Курчатовского комплекса кристаллографии и фотоники

Russian Federation, Moscow

A. A. Ivanov

National Research Centre "Kurchatov Institute"

Email: evgenkupffer@gmail.com

Центр фотохимии Курчатовского комплекса кристаллографии и фотоники

Russian Federation, Moscow

References

  1. Либенсон М.Н. // СОЖ. 1996. Т. 10. С. 92.
  2. Ruppin R. // Phys. Lett. A. 2000. V. 277. No. 1. P. 61.
  3. Shadrivov I.V. // Phys. Rev. E. 2004. V. 69. No. 1. Art. No. 016617.
  4. Fan S. // Opt. Express. 2015. V. 23. No. 6. P. 7611.
  5. Кim E., Park S.B. // In: Advanced fluorescence reporters in chemistry and biology I. Fundamentals and molecular design. Berlin, Heiderberg: Springer-Verlag, 2010. P. 149.
  6. Tулякова Е.В., Федорова О.А., Федоров Ю.В. и др. // Росс. хим. вестн. 2007. Т. 56. № 11. С. 2166; Tulyakova E.V., Fedorova O.A., Fedorov Yu V. et al. // Russ. Chem. Bull. 2007. V. 56. No. 11. P. 2166.
  7. Safir Filho M. // New J. Chem. 2017. V. 41. No. 22. P. 13760.
  8. Fang M., Yang J., Li Z. et al. // Prog. Mater. Sci. 2022. V. 125. P. 100914.
  9. Chen C., Liu G. // Ann. Rev. Mater. Sci. 1986. V. 16. No. 1. P. 203.
  10. De La Torre G. // Chem. Rev. 2004. V. 104. No. 9. P. 3723.
  11. Afzal S.M. // PLOS One. 2016. V. 11. No. 9. Art. No. e0161613
  12. Jazbinsek M. // Appl. Sciences. 2019. V. 9. No. 5. P. 882.
  13. Mедянцев Е.С., Лобова Н.А., Кошкин А.В. и др. // Опт. журн. 2024. Т. 91. № 4. С. 112.
  14. Zheng M.L., Fujita K., Chen W.Q. et al. // J. Phys. Chem. C. 2011. V. 115. No. 18. P. 8988.
  15. Coe B.J., Hall J.J., Harris J.A. et al. // Acta Cryst. 2005. V. E61. P. o464.
  16. Neese F. // Wiley Interdisci. Rev. Comput. Mol. Sci. 2012. V. 2. No. 1. P. 73.
  17. Schäfer A., Horn H., Ahlrichs R. et al. // J. Chem. Phys. 1992. V. 97. No. 4. P. 2571.
  18. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. No. 13. P. 6158.
  19. Takano Y., Houk K.N. // J. Chem. Theory Comput. 2005. V. 1. No. 1. P. 70.
  20. Tsukruk V.V., Bliznyuk V.N. // Progr. Polym. Sci. 1997. V. 22. No. 5. P. 1089.
  21. Chen C., Fang C. // Chemosensors. 2023. V. 11. No. 2. P. 87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of DAST and DAQT dyes (in two conformations).

Download (11KB)
3. Fig. 2. Schematic diagram of the experimental setup. LBO – SHG crystal, F – spectral filter, L1 – lens with a focal length of 1 cm, K – cuvette with DAST powder, L2 – lens with a focal length of 5 cm.

Download (10KB)
4. Fig. 3. Absorption (a) and fluorescence (b) spectra of DAQT dye in solvents of different nature (CDAQT = 2∙10–5 M).

Download (21KB)
5. Fig. 4. Geometry of the s-cis-conformation of DAQT dye calculated by the density functional method.

Download (11KB)
6. Fig. 5. Signals of the second optical harmonic and two-photon excited luminescence in microcrystalline powder of DAQT dye irradiated with femtosecond pulses at a wavelength of 1250 nm for two positions of the cuvette with the powder when it is moved perpendicular to the direction of the pump beam (a), (image of the sample in the setup is in the inset); spectra of two-photon excitation of luminescence at different average powers of femtosecond radiation at a wavelength of 1250 nm (b) (the inset shows the dependence of the intensity of two-photon excited luminescence on the average power of the femtosecond excitation pulses and its extrapolation by a parabolic function).

Download (38KB)

Copyright (c) 2024 Russian Academy of Sciences