Scattering of 3D extremely short pulses on a metallic inhomogeneity in an array of carbon nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the scattering of extremely short optical pulses propagating in a medium with carbon nanotubes containing metallic inhomogeneity. The behavior of a 3D pulse depending on three spatial coordinates and one time coordinate is investigated. The electromagnetic field is considered based on Maxwell’s equations, supplemented with a term that considers multiphoton absorption of carbon nanotubes. The peculiarities of the interaction of the pulse with a metal wire in the nonlinear medium under study have been established.

Full Text

Restricted Access

About the authors

S. V. Belibikhin

Volgograd State University

Author for correspondence.
Email: yana_nn@volsu.ru
Russian Federation, Volgograd

N. N. Konobeeva

Volgograd State University

Email: yana_nn@volsu.ru
Russian Federation, Volgograd

References

  1. Popov V.N. // Mater. Sci. Engin. R. Rep. 2004. V. 43. P. 61.
  2. Yang S. // Archit. Struct. Constr. 2023. V. 3. P. 289.
  3. Murjani B.O., Kadu P.S., Bansod M. // Carbon Lett. 2022. V. 32. P. 1207.
  4. Simon J., Flahaut E., Golzio M. // Materials. 2019. V. 12. No. 4. P. 624.
  5. Kanagamani M., Palanisamy G., Pitchaipillai M. // Indian J. Chem. Technol. 2023. V. 30. No. 4. P. 423.
  6. Utsumi S., Ujjain S.K., Takahashi S. // Nature. Nanotechnol. 2024. V. 19. P. 1007.
  7. Zhao H., Yang L., Wu W. et al. // ACS Nano. 2023. V. 17. No. 8. P. 7466.
  8. Kamaraju N., Kumar S., Kim Y.A. et al. // Appl. Phys. Lett. 2009. V. 95. Art. No. 081106.
  9. Dai L., Huang Z., Huang Q. et al. // Nanophotonics. 2021. V. 10. No. 2. P. 749.
  10. Belonenko M.B., Demushkina E.V., Lebedev N.G. // J. Russ. Laser Res. 2006. V. 27. P. 457.
  11. Konobeeva N.N., Fedorov E.G., Rosanov N.N. et al. // J. Appl. Phys. 2019. V. 126. Art. No. 203103.
  12. Fedorov E.G., Zhukov A.V., Bouffanais R. et al. // Phys. Rev. A. 2018. V. 97. No. 4. Art. No. 043814.
  13. Popov A.S., Belonenko M.B., Lebedev N.G. et al. // Eur. Phys. J. D. 2011. V. 65. P. 635.
  14. Sharma P., Pavelyev V., Kumar S. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. No. 6. P. 4399.
  15. Cai X., Cong H., Liu C. // Carbon. 2012. V. 50. No. 8. P. 2726.
  16. Kohls A., Ditty M.M., Dehghandehnavi F. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. No. 5. P. 6287.
  17. Халяпин В.А., Бугай А.Н. // Изв. РАН. Сер. физ. 2022. T. 86. № 1. С. 29, Khalyapin V.A., Bugay A.N. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 13.
  18. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М.: Наука, 1979.
  19. Dresselhaus M.S., Dresselhaus G., Saito R. // Carbon. 1995. V. 33. No. 7. P. 883.
  20. Yokoshi N., Ishihara H. // Nature Photon. 2018. V. 12. P. 125.
  21. van Loon M.A.W., Stavrias N., Le Nguyen H. et al. // Nature Photon. 2018. V. 12. P. 179.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the electric field intensity of a 3D pulse on the coordinates at different moments of time z: t = 0 (a), 1.5 (b), 2.5 (c), 3.5 (d). The values ​​on the color scale are normalized to the maximum value of I at each moment of time. The coordinates of the location of the inhomogeneity are x = 2.0, z = 1.2.

Download (260KB)
3. Fig. 2. Cross-sections of the electric field intensity of a 3D pulse passing through the pulse maximum from the x coordinate: t = 2.5 (a), 3.5 (b). The solid curve corresponds to a CNT array without a metal wire, the dotted curve corresponds to a CNT array with inhomogeneity.

Download (168KB)
4. Fig. 3. Longitudinal sections of the electric field intensity of a 3D pulse passing through the pulse maximum from the z coordinate: t = 2.5 (a), 3.5 (b). The solid curve corresponds to a CNT array without a metal wire, the dotted curve corresponds to a CNT array with inhomogeneity.

Download (159KB)

Copyright (c) 2024 Russian Academy of Sciences