Transport and magnetic properties BaxSr2-xFeCoO6
- Autores: Mamedov D.V.1, Fazlizhanova I.I.1, Makarchenko A.V.1, Eremina R.M.1
 - 
							Afiliações: 
							
- Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences
 
 - Edição: Volume 89, Nº 3 (2025)
 - Páginas: 374–379
 - Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
 - URL: https://edgccjournal.org/0367-6765/article/view/686014
 - DOI: https://doi.org/10.31857/S0367676525030064
 - EDN: https://elibrary.ru/FRKTRA
 - ID: 686014
 
Citar
Texto integral
Resumo
Measurements of the magnetic resonance spectra of BaxSr2-xFeCoO6 ceramics (x = 0, 0.1, 0.3, 0.5) were carried out in a wide temperature range from 300 to 700 K. At temperatures above 466, 519 and 472 K, phase transitions were observed for samples BaxSr2-xFeCoO6 x = 0.1, 0.3 and 0.5, respectively. The activation energy of the small polaron responsible for the jump conductivity was determined.
			                Palavras-chave
Sobre autores
D. Mamedov
Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of SciencesKazan, 420029, Russia
I. Fazlizhanova
Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of SciencesKazan, 420029, Russia
A. Makarchenko
Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of SciencesKazan, 420029, Russia
R. Eremina
Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences
														Email: REremina@yandex.ru
				                					                																			                								 				                								Kazan, 420029, Russia						
Bibliografia
- Zheng Y., Lu T., Polash Md M.H. et al. // Sci. Advances. 2019. V. 5. No. 9. Art. No. eaat9461.
 - Polash M., Mohaddes F., Rasoul M. et al. // J. Mater. Chem. C. 2020. V. 8. P. 4049.
 - Калинин Ю.Е., Макагонов В.А., Ситникова А.В. // Изв. РАН. Сер. физ. 2016. Т. 80. № 9. С. 1301; Kalinin Yu.E., Makagonov V.А., Sitnikov А.V. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No 9. P. 1180.
 - Champness C.H., Chiang P.T., Parekh P. // Canad. J. Phys. 1965. V. 43. No. 4. P. 653.
 - Ohta S., Nomura T., Ohta H. et al. // J. Appl. Phys. 2005. V. 97. No. 3. Art. No. 034106.
 - Еремина Р.М., Чупахина Т.И., Батулин Р.Г. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 377; Eremina R.М., Chupakhina Т.I., Batullin R.G. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. C. 326.
 - Hebert S., Carbonio R., Martin C. et al. // ZAAC. 2023. V. 649. No. 5. Art. No. e202200324.
 - Popov D.V., Batulin R.G., Cherosov M.A. et al. // J. Magn. Magn. Mater. 2024. V. 595. Art. No. 171611.
 - Roy P., Waghmare V., Maiti T. // RSC Advances. 2016. V. 6. P. 54636.
 - Gyan D.S., Syndram V., Dwivedi A. et al. // J. Phys. Cond. Matter. 2020. V. 32. No. 23. Art. No. 235401.
 - Yatsyk I.V., Mamedov D.V., Shestakov A.V. et al. // Appl. Magn. Res. 2024. V. 55. P. 1199.
 - Baliteau S., Mauvy F., Fourcade S. et al. // Solid State Sci. 2009. V. 11. No. 9. P. 1572.
 - Lin Y.Q., Chen X.M. // Appl. Phys. Lett. 2010. V. 96. No. 14. Art. No. 142902.
 - Wang G., Wang C., Huang S. et al. // J. Amer. Ceram. Soc. 2013. V. 96. No. 7. P. 2203.
 - Mishra S., Choudhary R.N.P., Parida S.K. // Ceram. Int. 2023. V. 49. No. 14. P. 22702.
 
Arquivos suplementares
				
			
						
						
					
						
						
									


