High-harmonic large-orbit terahertz gyrotrons for physical applications

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An overview is given of works on two experimental installations that implement large-orbit gyrotrons (LOG) operating in the sub-terahertz frequency range at high harmonics of the electronic cyclotron frequency. At the installation of a pulsed LOG (80–100 keV/0.7–1.0 A), a radiation source with a frequency of 1 THz with a kilowatt output power level is being developed, which is planned to be used in plasma applications. A continuous subterahertz LOG (30 keV/0.7 A) is being created as a prototype of a universal multi-frequency source for spectroscopic applications. Complex electrodynamic systems are also described, designed to increase the selectivity and efficiency of excitation of high cyclotron harmonics in these devices, as well as to ensure the tuning of the generation frequency.

Авторлар туралы

I. Bandurkin

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

Yu. Kalynov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

I. Osharin

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. Savilov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

E. Semenov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

D. Shchegolkov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: savilov@ipfran.ru
Russia, 603950, Nizhny Novgorod

Әдебиет тізімі

  1. Jory H. Research and development technical report ecom-01873-f. Technical Report ECOM-01873-F. Palo Alto: Varian Associates, 1968.
  2. McDermott D.B., Luhmann N.C. Jr., Kupiszewski A., Jory H.R. // Phys. Fluids. 1983. V. 26. P. 1936.
  3. Lawson W., Destler W.W., Striffler C.D. // IEEE Trans. Plasma Sci. 1985. V. PS-13. P. 444.
  4. Bratman V.L., Fedotov A.E., Kalynov Y.K. et al. // IEEE Trans. Plasma Sci. 1999. V. 27. P. 456.
  5. Bratman V.L., Kalynov Yu.K., Manuilov V.N. // Phys. Rev. Lett. 2009. V. 102. Art. No. 245101.
  6. Bandurkin I.V., Bratman V.L., Kalynov Yu.K. et al. // IEEE Trans. Electron Devices. 2018. V. 65. P. 2287.
  7. Kalynov Yu.K., Manuilov V.N., Fiks A.Sh., Zavolsky N.A. // Appl. Phys. Lett. 2019. V. 114. Art. No. 213502.
  8. Shalashov A., Gospodchikov E. // IEEE Trans. Antennas Propag. 2016. V. 64. P. 3960.
  9. Abramov I.S., Gospodchikov E.D., Shalashov A.G. // Phys. Rev. Appl. 2018. V. 10. Art. No. 034065.
  10. Bandurkin I.V., Kalynov Y.K., Makhalov P.B. et al. // IEEE Trans. Electron Devices. 2017. V. 64. P. 300.
  11. Kalynov Yu.K., Osharin I.V., Savilov A.V. // Phys. Plasm. 2016. V. 23. Art. No. 053116.
  12. Bandurkin I.V., Fokin A.P., Glyavin M.Y. et al. // IEEE Electron Device Lett. 2020. V. 41. P. 1412.
  13. Bandurkin I.V., Kalynova G.I., Kalynov Yu.K. et al. // IEEE Trans. Electron Devices. 2021. V. 68. P. 347.
  14. Kalynov Y.K., Osharin I.V., Savilov A.V. // IEEE Trans. Electron Devices. 2020. V. 67. P. 3795.
  15. Bandurkin I.V., Kalynov Y. K., Osharin I.V., Savilov A.V. // Phys. Plasmas. 2016. V. 23. Art. No. 013113.
  16. Guznov Yu.M., Kalynov Y.K., Osharin I.V., Savilov A.V. // IEEE Trans. Electron Devices. 2021. V. 69. P. 325.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (273KB)
3.

Жүктеу (1020KB)
4.

Жүктеу (1MB)
5.

Жүктеу (525KB)

© И.В. Бандуркин, Ю.К. Калынов, И.В. Ошарин, А.В. Савилов, Е.С. Семенов, Д.Ю. Щегольков, 2023