Multiparameter quantum metrology with bright solitons

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the problem of quantum metrology with simultaneous measurement of several phase parameters in the framework of current tendencies of development of alternative navigation. The fundamental limits of linear and nonlinear metrology are studied. The effect of losses on the accuracy of quantum metrology for several parameters is revealed. A realistic scenario for preparing three-mode NooN states using atomic bright solitons is proposed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Alodjants

ITMO National Research University; Southern Ural State University

Хат алмасуға жауапты Автор.
Email: alexander_ap@list.ru
Ресей, Saint Petersburg; Chelyabinsk

D. Tsarev

ITMO National Research University; Southern Ural State University

Email: alexander_ap@list.ru
Ресей, Saint Petersburg; Chelyabinsk

S. Osipov

Cherepovets State University

Email: alexander_ap@list.ru
Ресей, Cherepovets

M. Podoshvedov

Southern Ural State University; Kazan National Research Technical University

Email: alexander_ap@list.ru
Ресей, Chelyabinsk; Kazan

S. Kulik

Southern Ural State University; Lomonosov Moscow State University

Email: alexander_ap@list.ru
Ресей, Chelyabinsk; Moscow

Әдебиет тізімі

  1. Pezzé L., Smerzi A., Oberthaler M.K. et al. // Rev. Mod. Phys. 2018. V. 90. Art. No. 035005.
  2. Degen C.L., Reinhard F., Cappellaro P. // Rev. Mod. Phys. 2017. V. 89. Art. No. 035002.
  3. Crawford S.E., Shugayev R.A., Paudel H.P. et al. // Adv. Quantum Technol. 2021. V. 4. Art. No. 2100049.
  4. Bongs K., Holynski M., Vovrosh J. et al. // Nature Rev. Phys. 2019. V. 1. P. 731.
  5. Abend S., Allard B., Arnold A.S. et al. // AVS Quantum Sci. 2023. V. 5. No. 1. Art. No. 019201.
  6. Ludlow A.D., Boyd M.M., Ye J. et al. // Rev. Mod. Phys. 2015. V. 87 P. 2.
  7. Mitchell M.W., Alvarez S.P. // Rev. Mod. Phys. 2020. V. 92. No. 2. Art. No. 021001.
  8. Templier S., Cheiney P., D’Armagnac De Castanet Q. // Sci. Advances. 2022. V. 8. Art. No. eadd3854.
  9. Bloch I. // Nature Physics. 2005. V. 1. No. 1. P. 23.
  10. Сазонов С.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 766; Sazonov S. V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 643.
  11. Afanasiev A.E., Kalmykov A.S., Kirtaev R.V. et al. // Opt. Laser Tech. 2022. V. 148. Art. No. 107698.
  12. Sewell R.J., Dingjan J., Baumgärtner F. et al. // J. Physics B. 2010. V. 43. No. 5. Art. No. 051003.
  13. Царёв Д.В., Нго Т.В., Алоджанц А.П. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 332; Tsarev D.V., Ngo V.T., Alodjants A.P. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 3. P. 257.
  14. Сазонов С.В., Устинов Н.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 1. С. 11; Sazonov S.V., Ustinov N.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 1. P. 5.
  15. Touboul P., Métris G., Rodrigues M. et al. // Phys. Rev. Lett. 2022. V. 129. No. 12. Art. No. 121102.
  16. Anglin J.R., Vardi A. // Phys. Rev. A. 2001. V. 64. No. 5. Art. No. 013605.
  17. Калинович А.А., Захарова И.Г. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1701; Kalinovich A.A., Zakharova I.G. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1785.
  18. Joo J., Park K., Jeong H. et al. // Phys. Rev. A. 2012. V. 86. Art. No. 043828.
  19. Dowling L.P. // Cont. Phys. 2008. V. 49. P. 125.
  20. Birrittella R.J., Alsing P.M., Gerry C. C. // AVS Quantum Sci. 2021. V. 3. Art. No. 014701.
  21. Tsarev D.V., Arakelian S.M., Chuang Y.-L. et al. // Opt. Express. 2018. V. 26. Art. No. 19583.
  22. Maldonado-Mundo D., Luis A. // Phys. Rev. A. 2009. V. 80. Art. No. 063811.
  23. Napolitano M., Mitchell M.W. // New J. Phys. 2010. V. 12. Art. No. 09301.
  24. Tsarev D.V., Ngo T.V., Lee R.-K., Alodjants A.P. // New J. Phys. 2019. V. 21 Art. No. 083041.
  25. Alodjants A.P., Tsarev D.V., Ngo T.V., Lee R.-K. // Phys. Rev. A. 2022. V. 105. Art. No. 012606.
  26. Liu J., Lu X.M., Sun Z., Wang X. // J. Phys. A. 2016. V. 49. Art. No. 115302.
  27. Gessner M., Pezzé L., Smerzi A. // Phys. Rev. Lett. 2018. V. 121. Art. No. 130503.
  28. Humphreys P.C., Barbieri M., Datta A., Walm-sley I.A. // Phys. Rev. Lett. 2013. V. 111. Art. No. 070403.
  29. Demkowicz-Dobrzanski R., Dorner U., Smith B.J. et al. // Phys. Rev. A. 2009. V. 80. Art. No. 013825.
  30. Raghavan S., Agrawan G.P. // J. Mod. Optics. 2000. V. 47. P. 1155.
  31. Tsarev D., Alodjants A., Lee R.-K. // New J. Physics. 2020. V. 22. No. 11. Art. No. 113016.
  32. Tsarev D., Osipov S., Lee R.-K. et al. // Phys. Rev. A. 2023. V. 108. Art. No. 062612.
  33. Dorner U., Demkowicz-Dobrzanski R., Smith B. J. et al. // Phys. Rev. Lett. 2009. V. 102. Art. No. 040403.
  34. Humphreys P.C., Barbieri M., Datta A., Walmsley I.A. // Phys. Rev. Lett. 2013. V. 111. Art. No. 070403.
  35. Khaykovich L., Schreck F., Ferrari G. et al. // Science. 2002. V. 296. P. 1290.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of multiparameter quantum metrology with solitons. |ψin> is a trial multiparticle state of quantum solitons, which evolves with the accumulation of phases φj containing information about the measured parameters χj (j = 1, ..., d). The operator denotes the linear transformations that allow the construction of a procedure for measuring and estimating the unknown parameters. Details are given in the text

Жүктеу (59KB)
3. Fig. 2. TMSDK ground state distributions at (a) Λ = 0; (b) Λ = Λcr = 3.34087496; (c) Λ = 3.345. N = 40

Жүктеу (124KB)
4. Fig. 3. Dependence of the ultimate measurement error σ(1) on the control parameter Λ in the vicinity of the critical point Λ = Λcr for linear quantum metrology using solitons. The particle loss is characterised by the deviation of the FDP transparency coefficient η from unity. The number of particles is N = 40. The limit linear quantum metrology is characterised by the SCP and CIP, which are indicated by the dashed lines. The black dotted line denotes the accuracy of linear metrology achieved using optimal states, while the thin solid black line corresponds to the PG σPG = 1 / N

Жүктеу (102KB)

© Russian Academy of Sciences, 2024