To the theory of remagnetization kinetics of magnetic composites
- Autores: Zubarev A.Y.1, Iskakova L.Y.1
 - 
							Afiliações: 
							
- Ural Federal University
 
 - Edição: Volume 88, Nº 4 (2024)
 - Páginas: 653-659
 - Seção: Magnetic Phenomena and Smart Composite Materials
 - URL: https://edgccjournal.org/0367-6765/article/view/654713
 - DOI: https://doi.org/10.31857/S0367676524040188
 - EDN: https://elibrary.ru/QHAUVR
 - ID: 654713
 
Citar
Texto integral
Resumo
Results of theoretical study of kinetics of the remagnetization of an ensemble of interacting ferromagnetic particles immobilized in a host non -magnetic medium are presented. The results show that the influence of interparticle interaction on the remagnetization is determined by the amplitude of the applied alternating field: it slows down this process in a weak field and accelerates it in a strong field. The interaction of particles increases both components of the complex magnetic susceptibility of the composite.
Texto integral
Sobre autores
A. Zubarev
Ural Federal University
							Autor responsável pela correspondência
							Email: A.J.Zubarev@urfu.ru
				                					                																			                												                	Rússia, 							Ekaterinburg, 620000						
L. Iskakova
Ural Federal University
														Email: A.J.Zubarev@urfu.ru
				                					                																			                												                	Rússia, 							Ekaterinburg, 620000						
Bibliografia
- Boczkowska A., Awietjan S.F. // Mater. Sci. Forum. 2010. V. 636–637. P. 766.
 - Lopez-Lopez M. T., Scionti G., Oliveira A.C. et al. // PLoS ONE. 2015. V. 10. No. 1. Art. No. e0133878.
 - Bira N., Dhagat P., Davidson J.R.// Front. Robot. AI. 2020. V. 7. Art. No. 588391.
 - Kurlyandskaya G.V., Blyakhman F.A., Makarova E.B. et al. // AIP Advances. 2020. V. 10. P. 12512.
 - Rajan A., Sahu N.K. // J. Nanopart. Res. 2020. V. 22. P. 319.
 - Vilas-Boas V. // Molecules. 2020. V. 25. P. 2874
 - Lingbing Li. // In: Handbook of materials for nanomedicine. eBook, 2020.
 - Chung H-J., Parsons A, Zheng L. // Adv. Intell. Syst. 2021. V. 3. Art. No. 2000186.
 - Kaewruethai T, Laomeephol C., Pan Y., Luckanagul J. // Gels. 2021. V. 7. P. 228.
 - Sung B., Kim M-H., Abelmann L. // Bioeng. Transl. Med. 2021. V. 6. Art. No. e10190.
 - Imran M., Affandi A.M., Alam M.M. et al. // Nanotechnology. 2021. V. 32. No. 42. Art. No. 422001
 - Naghdi M., Ghovvati M., Rabiee N. et al. //Adv. Colloid Interface Sci. 2022. V. 308. Art. No. 102771.
 - Socoliuc V., Avdeev M.V., Kuncser V. et al. // Nanoscale. 2022. V. 14. P. 4786.
 - Schneider M., Martín M., Otarola J. et al. // Pharmaceutics. 2022. V. 14. P. 204.
 - Rosensweig R.E. // J. Magn. Magn. Mater. 2002. V. 252. P. 370.
 - Poperechny I.S., Raikher Yu.L., Stepanov V.I. // Phys. Rev. B. 2010. V. 82. Art. No. 174423.
 - Engelmann U., Buhl E.M., Baumann M. et al. // Curr. Dir. Biomed. Eng. 2017. V. 3. P. 457.
 - Coral D.F., Zélis P.M., Marciello M. et al. // Langmuir. 2016. V. 32. No. 5. P. 1201.
 - Branquinho L.C., Carriao M.S., Costa A.S. et al. // Sci. Reports. 2013. V. 3. P. 2887.
 - Mehdaoui B., Tan R.P., Meffre A. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 174419.
 - Serantes D., Baldomir D., Martinez-Boubeta C. et al. // J. Appl. Phys. 2010. V. 108. Art. No. 073918.
 - Valdés D.P., Lima E., Zysler J., De Biasi E. // Phys. Rev. Appl. 2020. V. 14. Art. No. 014023.
 - Landi G.T. // Phys. Rev. B. 2014. V. 89. Art. No. 014403.
 - Zubarev A. Yu. // Phys. Rev. E. 2019. V. 99. Art. No. 062609.
 - Ambarov A.V., Zverev Vl.S., Elfimova E.A. // J. Magn. Magn. Mater. 2020. V. 497. Art. No. 166010.
 - Dutz S., Kettering M., Hilger I. et al. // Nanotechnology. 2011. V. 22. Art. No. 265102.
 - Perigo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 041302.
 
Arquivos suplementares
				
			
						
						
					
						
						
									







