Magnetization features of small multi-core particles: theory and computer simulations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We investigated the orientation texturing of magnetic moments of four magnetic nanoparticles fixed at the vertices of a regular tetrahedron and formed a separate polyhedral particle. Numerical calculations of the probability density of the magnetic moment orientation, the static magnetization and the initial magnetic susceptibility of a multi-core particle are obtained by the Monte-Carlo method.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Grokhotova

Ural Federal University

Хат алмасуға жауапты Автор.
Email: lena.groxotova@mail.ru
Ресей, Ekaterinburg

A. Solovyova

Ural Federal University

Email: lena.groxotova@mail.ru
Ресей, Ekaterinburg

E. Elfimova

Ural Federal University

Email: lena.groxotova@mail.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Socoliuc V., Peddis D., Petrenko V.I. et al. // Magnetochemistry. 2020. V. 6. P. 2.
  2. Borin D.Yu., Zubarev A.Y., Chirikov D.N., Odenbach S. // J. Phys. Cond. Matter. 2014. V. 26. Art. No. 406002.
  3. Lopez-Lopez M.T., Borin D.Yu., Zubarev A.Y. // Phys. Rev. E. 2017. V. 96. Art. No. 022605.
  4. Schaller V., Wahnström G., Sanz-Velasco A. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 092406.
  5. Ahrentorp F., Astalan A., Blomgren J. et al. // J. Magn. Magn. Mater. 2015. V. 380. P. 221.
  6. Krishnan K.M. // IEEE Trans. Magn. 2010. V. 46. P. 2523.
  7. Dutz S., Kettering M., Hilger I. et al. // Nanotechnology. 2011. V. 22. Art. No. 265102.
  8. Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
  9. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  10. Нургазизов Н.И., Бизяев Д.А., Бухараев А.А. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 897; Nurgazizov N.I., Bizyaev D.A., Bukharaev A.A. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 815.
  11. Комина А.В., Ярославцев Р.Н., Герасимова Ю.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1597; Komina A.V., Yaroslavtsev R.N., Stolyar S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1362.
  12. Vargas-Osorio Z., Argibay B., Pineiro Y. et al. // IEEE Trans. Magn. 2016. V. 52. Art. No. 2300604.
  13. Schnorr J., Wagner S., Abramjuk C. et al. // Radiology. 2006. V. 240. P. 90.
  14. Wagner M., Wagner S., Schnorr J. et al. // J. Magn. Reson. Imaging. 2011. V. 34. P. 816.
  15. Kratz H., Taupitz M., Ariza de Schellenberger A. et al. // PLOS One. 2018. V. 13. Art. No. e0190214.
  16. Kurlyandskaya G., Shcherbinin S., Volchkov S. et al. // J. Magn. Magn. Mater. 2018. V. 459. P. 154.
  17. Mohtashamdolatshahi A., Kratz H., Kosch O. et al. // Sci. Reports. 2020. V. 10. Art. No. 17247.
  18. Kim J., Staunton J.R., Tanner K. // Adv. Mater. 2016. V. 28. P. 132.
  19. Tognato R., Bonfrate V., Giancane G., Serra T. // Smart Mater. Struct. 2022. V. 31. Art. No. 074001.
  20. Zhou W., Dong X., He Y. et al. // Smart Mater. Struct. 2022. V. 31. Art. No. 105002.
  21. Levada K., Omelyanchik A., Rodionova V. et al. // Cells. 2019. V. 8. P. 1279.
  22. Campos F., Bonhome-Espinosa A.B., Carmona R. et al. // Mater. Sci. Eng. C. 2021. V. 118. Art. No. 111476
  23. Zubarev A.Y. // Phys. Rev. E. 2019. V. 99. Art. No. 062609.
  24. Coïsson M., Barrera G., Appino C. et al. // J. Magn. Magn. Mater. 2019. V. 473. P. 403.
  25. Kahmann T., Ludwig F. // J. Appl. Phys. 2020. V. 127. Art. No. 233901.
  26. Schaller V., Wahnström G., Sanz-Velasco A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 1400.
  27. Kuznetsov A.A. // Phys. Rev. B. 2018. V. 98. Art. No. 144418.
  28. Ilg P. // Phys. Rev. E. 2019. V. 100. Art. No. 022608.
  29. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford University Press, 1989.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Structure of the model MGP. Granules with diameter d are located at the vertices of a tetrahedron with edge A.

Жүктеу (60KB)
3. Fig. 2. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 1: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

Жүктеу (103KB)
4. Fig. 3. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 3: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

Жүктеу (130KB)
5. Fig. 4. Dependence of magnetization M on the Langevin parameter α for a model MGP with edge A = 1: (a) , ; (b) , ; (c) , . The symbols denote the results of Monte Carlo simulations for different values ​​of the parameter λe, as indicated in the legend. The dotted line corresponds to the Langevin magnetization L(α).

Жүктеу (49KB)

© Russian Academy of Sciences, 2024