Formation and dynamics of droplets in a magnetic fluid in microchannels in an inhomogeneous magnetic field of ring magnet

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We studied the dynamics of non-magnetic droplets in magnetic liquids in microchannels with a “flow focusing” configuration under the action of an inhomogeneous magnetic field of an annular magnet. Two types of multiphase systems were studied: non-magnetic emulsions “oil in water”, “water in oil”, as well as “water in oil in water” and magnetic direct emulsions in which the magnetic liquid was used as a continuous phase. The dependences of the sizes of the generated non-magnetic inclusions on the flow rate of the continuous magnetic phase and the displacement of the magnetic field source relative to the dispersed phase supply connector horizontally along the channel axis are obtained.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Kalyuzhnaya

Southwest State University

Email: r-piter@yandex.ru
Ресей, Kursk

E. Sokolov

Southwest State University

Email: r-piter@yandex.ru
Ресей, Kursk

G. Zhukov

Southwest State University

Email: r-piter@yandex.ru
Ресей, Kursk

P. Ryapolov

Southwest State University

Хат алмасуға жауапты Автор.
Email: r-piter@yandex.ru
Ресей, Kursk

Әдебиет тізімі

  1. Han W., Chen X. // J. Brazil. Soc. Mech. Sci. Eng. 2021. V. 43. No. 5. P. 247.
  2. Ren K., Zhou J., Wu H. // Acc. Chem. Res. 2013. V. 46. No. 11. P. 2396.
  3. Bremond N., Bibette J. // Soft Matter. 2012. V. 8. No. 41. P. 10549.
  4. Seemann R. Brinkmann M., Pfohl T. et al. // Rep. Progr. Phys. 2011. V. 75. No. 1. Art. No. 016601.
  5. Baret J.C. // Lab on a Chip. 2012. V. 12. No. 3. P. 422.
  6. Shui L., Eijkel J.C.T., Van den Berg A. // Adv. Coll. Interface Sci. 2007. V. 133. No. 1. P. 35.
  7. Nakashima T., Shimizu M., Kukizaki M. // Adv. Drug Deliv. Rev. 2000. V. 45. No. 1. P. 47.
  8. Mason T.G., Bibette J. // Langmuir. 1997. V. 13. No. 17. P. 4600.
  9. Zhao Z., Wang Z., Li G. et al. // Adv. Funct. Mater. 2021. V. 31. No. 31. Art. No. 2103339.
  10. Zhang Y., Nguyen N.T. // Lab on a Chip. 2017. V. 17. No. 6. P. 994.
  11. Розенцвейг Р.Е. Феррогидродинамика. М.: Мир. 1989. 240 c.
  12. Liang D., Ma P., Zhu C. et al. // IEC Res. 2019. V. 58. No. 41. P. 19226.
  13. Dunne P., Adachi T., Dev A.A. et al. // Nature. 2020. V. 581. No. 7806. P. 58.
  14. Toussaint R., Akselvoll J., Helgesen G. et al. // Phys. Rev. 2004. V. 69. Art. No. 011407.
  15. De Gans B., Duin N., Van den Ende D. et al. // J. Chem. Phys. 2000. V. 113. P. 2032.
  16. Bashtovoi V., Kovalev M., Reks A. // J. Magn. Magn. Mater. 2005. V. 289. P. 350.
  17. Диканский Ю.И., Закинян А.Р. // ЖТФ. 2010. Т. 80. № 8. С. 8; Dikansky Yu.I., Zakinyan A.R. // Tech. Phys. 2010. V. 55. No. 8. P. 1082.
  18. Katsikis G., Breant A., Rinberg A. et al. // Soft Matter. 2018. V. 14. No. 5. P. 681.
  19. Banerjee U., Mandal C., Jain S.K. // Proc. 46th National Conf. FMFP (Coimbatore, 2019). P. 1.
  20. Huang X., Saadat M., Bijarchi M.A. et al. // Chem. Eng. Sci. 2023. V. 270. Art. No. 118519.
  21. Соколов Е.А., Калюжная Д.А., Васильева А.О., и др. // Изв. ЮЗГУ Сер. тех. и технол. 2022. Т. 12. № 1. С. 118.
  22. Kalyuzhnaya D., Sokolov E., Vasilyeva A. et al. // Fluids. 2023. V. 8. No. 2. Art. No. 42.
  23. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental setup: external appearance (a); block diagram (b): 1 — microfluidic device, 2 — ring permanent magnet, 3,4 — syringe pump, 5 — digital microscope, 6 — illuminator, 7 — computer, 8 — mechatronic drive.

Жүктеу (189KB)
3. Fig. 2. Configuration of microfluidic devices: chip for single emulsions (a): 1 — connector for feeding the continuous phase, 2 — connector for feeding the dispersed phase, 3 — output connector; chip for double emulsions (b): 1 — connector for feeding the external phase. The region of magnetic levitation at the zero position of the ring magnet is highlighted in green, 2 — connector for feeding the middle phase, 3 — connector for feeding the internal phase, 4 — output connector.

Жүктеу (51KB)
4. Fig. 3. Spatial distribution of isolines of the modulus of the inhomogeneous magnetic field in the Cartesian coordinate system, the center of which is the center of symmetry of the magnet: for Magnet 1 (a); for Magnet 2 (b).

Жүктеу (402KB)
5. Fig. 4. Emulsions in microchannels: single direct emulsion (a); single inverse emulsion (b); double emulsion “water/oil/water” [22] (c).

Жүктеу (164KB)
6. Fig. 5. Dynamics of mineral oil droplets in a sample of magnetic fluid МЖ-1 at different feed rates of the continuous phase q1 under the action of the magnetic field of the ring Magnet1, located in the zero position relative to the connector for feeding the dispersed phase into the microchannel.

Жүктеу (143KB)
7. Fig. 6. Dependences of the volume of oil droplets in a microfluidic chip: on the flow rate of magnetic fluid МЖ-1 (a); on the movement of magnets (b).

Жүктеу (54KB)
8. Fig. 7. Dependence of the volume of mineral oil drops on the movement of magnets for a sample of magnetic fluid МЖ-2.

Жүктеу (24KB)

© Russian Academy of Sciences, 2024