Electron beam stimulated luminescence of helium ion irradiated hexagonal boron nitride

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The impact of the irradiation with focused helium ion beam and electron beam on the cathodoluminescence (CL) of hexagonal boron nitride was investigated. It was shown that the irradiation with helium ions resulted in a decrease of the intensity of CL in the region 200–700 nm. Subsequent irradiation with electrons results in an increase of the intensity of 2 eV CL band comparing with its intensity in pristine material.

Sobre autores

Yu. Petrov

Saint-Petersburg State University, Faculty of Physics

Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

O. Vyvenko

Saint-Petersburg State University, Faculty of Physics

Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

O. Gogina

Saint-Petersburg State University, Faculty of Physics

Autor responsável pela correspondência
Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

T. Sharov

Saint-Petersburg State University, Faculty of Physics

Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

S. Kovalchuk

Freie Universität Berlin, Department of Physics

Email: o_gogina@mail.ru
Germany, 14195, Berlin

K. Bolotin

Freie Universität Berlin, Department of Physics

Email: o_gogina@mail.ru
Germany, 14195, Berlin

Bibliografia

  1. Bourrellier R., Meuret S., Tararan A. et al. // Nano Lett. 2016. V. 16. No. 7. P. 4317.
  2. Castelletto S., Inam F.A., Sato S., Boretti A. // Beilstein J. Nanotechnol. 2020. V. 1. No. 1. P. 740.
  3. Korona T., Chojecki M. // Int. J. Quant. Chem. 2019. V. 119. No. 14. Art. No. e25925.
  4. Weston L., Wickramaratne D., Mackoit M. et al. // Phys. Rev. B. 2018. V. 97. No. 21. Art. No. 214104.
  5. Turiansky M.E., Alkauskas A., Bassett L.C. et al. // Phys. Rev. Lett. 2019. V. 123. No. 12. Art. No. 127401.
  6. Tran T.T., Kerem Bray, Ford M.J. et al. // Nature Nano-technol. 2016. V. 11. No. 1. P. 37.
  7. Grosso G., Moon H., Lienhard B. et al. // Nature Commun. 2017. V. 8. No. 1. P. 1.
  8. Choi S., Tran T.T., Elbadawi C. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. No. 43. P. 29642.
  9. Guo N.J., Liu W., Li Z.P. et al. // ACS Omega. 2022. V. 7. No. 2. P. 1733.
  10. Петров Ю.В., Гогина О.А., Вывенко О.Ф. и др. // ЖТФ. 2022. Т. 92. № 8. С. 1166.
  11. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Meth. Phys. Res. B. 2010. V. 268. No. 11–12. P. 1818.
  12. Drouin D., Couture A.R., Joly D. et al. // J. Scan. Microsc. 2007. V. 29. No. 3. P. 92.
  13. Uddin M.R., Majety S., Li J. et al. // J. Appl. Phys. 2014. V. 115. No. 9. Art. No. 093509.
  14. Pons D., Bourgoin J.C. // J. Physics C. 1985. V. 18. No. 20. P. 3839.
  15. Hoffman D.M., Doll G.L., Eklund P.C. // Phys. Rev. B. 1984. V. 30. No. 10. P. 6051.
  16. Ngwenya T.B., Ukpong A.M., Chetty N. // Phys. Rev. B. 2011. V. 84. No. 24. Art. No. 245425.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (171KB)
3.

Baixar (3MB)
4.

Baixar (35KB)
5.

Baixar (48KB)
6.

Baixar (901KB)
7.

Baixar (45KB)
8.

Baixar (39KB)

Declaração de direitos autorais © Ю.В. Петров, О.Ф. Вывенко, О.А. Гогина, Т.В. Шаров, С. Ковальчук, К. Болотин, 2023