Effect of prolonged annealing on the morphology and optical properties of ZnO films produced by magnetron sputtering

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of annealing time on the structural and optical properties of ZnO films, which are formed from Zn films obtained by magnetron sputtering followed by oxidation in air, is described. Thermal oxidation in air was carried out for 7 and 24 hours, respectively, in a programmable muffle furnace at T = 750°C. A change in the structure of the film surface depending on the annealing time of the Zn film and the substrate material was found, which manifests itself in the optical properties of the films.

Sobre autores

V. Tomaev

St. Petersburg State Institute of Technology; St. Petersburg Mining University

Autor responsável pela correspondência
Email: tvaza@mail.ru
Russia, 190013, St. Petersburg; Russia, 199106, St. Petersburg

V. Polishchuk

Admiral Makarov State University of Maritime and Inland Shiping

Email: tvaza@mail.ru
Russia, 198035, Saint-Petersburg

N. Leonov

National Research University ITMO

Email: tvaza@mail.ru
Russia, 197101, St. Petersburg

T. Vartanyan

National Research University ITMO

Email: tvaza@mail.ru
Russia, 197101, St. Petersburg

Bibliografia

  1. Özgür Ü., Alivov Ya. I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 041301.
  2. Morkoç H., Özgür Ü. Zinc oxide: fundamentals, materials and device technology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2009. 490 p.
  3. Singh A., Vishwakarma H.L. // IOSR-JAP. 2014. V. 6. No. 2. Ver. II. P. 28.
  4. Özgür Ü., Hofstetter D., Morkoç H. // Proc. IEEE. 2010. V. 98. No. 7. P. 1255.
  5. Rashmi R.K., Deepak .P, Saurabh K.P. // Res. Develop. Mater. Sci. V. 3. No. 3. P. 265.
  6. Ellmer K., Klein A., Rech B. Transparent conductive zinc oxide. Springer series in materials science 104. Berlin Heidelberg: Springer-Verlag, 2008. 32 p.
  7. Parihar V., Raja M., Paulose R. // Rev. Adv. Mater. Sci. 2018. V. 53. P. 119.
  8. Janotti A., Van de Walle C.G. // Rep. Prog. Phys. 2009. V. 72. P. 126501.
  9. Kulkarni S.S., Shirsat M.D. // IJARPS. 2015. V. 2. No. 1. P. 14.
  10. Nenavathu B.P., Sharma A., Dutta R.K. // J. Water Environ. Nanotechnol. 2018. V. 3(4). P. 289.
  11. Pranav Y.D., Kartik H.P., Kamlesh V.C. et al. // Proc. Technology. 2016. V. 23. P. 328.
  12. Damiani L.R., Mansano R.D. // J. Phys. Conf. Ser. 2012. V. 370. Art. No. 012019.
  13. Kuz'mina A.S., Kuz’mina M.Yu., Kuz’min M.P. // Mater. Sci. Forum Subm. 2019. V. 989. No. 10. P. 210.
  14. Balela M.D.L., Pelicano C.M.O., Ty J.D., Yanagi H. // Opt. Quant. Electron. 2017. V. 49. No. 3. 11 p.
  15. Hasnidawani J.N., Azlina H.N., Norita H. et al. // Proc. Chemistry. 2016. V. 19. P. 211.
  16. Abdullach K.A., Awad S., Zaraket J., Salame C. // Energy Proc. 2017. V. 119. P. 565.
  17. Fouad O.A., Ismail A.A., Zaki Z.I., Mohamed R.M. // Appl. Catalysis B. 2006. V. 62. P. 144.
  18. Hassan N.K., Hashim M.R. // Sains Malaysiana. 2013. V. 42. No. 2. P. 193.
  19. Dikovska A.Og., Atanasov P.A., Vasilev C. et al. // J. Optoelectron. Adv. Mater. 2005. V. 7. No. 3. P. 1329.
  20. Vincze A., Bruncko J., Michalka M., Figura D. // Central Europ. J. Phys. 2007. V. 5. No. 3. P. 385.
  21. John A., Ko H.-U., Kim D.-G., Kim J. // Cellulose. 2011. V. 18. P. 675.
  22. Habibi R., Daryan J.T., Rashidi A.M. // J. Exper. Nanosci. 2009. V. 4. No. 1. P. 35.
  23. Feng T.-H., Xia X.-C. // Opt. Mater. Express. 2016. V. 6. Art. No. 3735.
  24. Kelly P.J., Arnell R.D. // Vacuum. 2000. V. 56. P. 159.
  25. Rahman F. // Opt. Engin. 2019. V. 58(1). P. 010901.
  26. Guan N., Dai X., Babichev A.V. et al. // Chem. Sci. 2017. V. 8. P. 7904.
  27. Park G.C., Hwang S.M., Lee S.M. et al. // Sci. Reports. 2015. V. 5. P. 10410.
  28. Macaluso R., Lullo G., Crupi I. et al. // Electronics. 2020. V. 9. P. 991.
  29. Baratto C., Kumar R., Comini E. et al. // Opt. Express. 2015. V. 23. No. 15. P. 18937.
  30. Rauwel P., Salumaa M., Aasna A. et al. // J. Nanomaterials. 2016. V. 2016. Art. No. 5320625.
  31. Rodnyi P., Chernenko K., Klimova O. et al. // Radiat. Measurements. 2016. V. 90. P. 136.
  32. Rodnyi P.A., Chernenko K.A., Venevtsev I.D. // Opt. Spectrosc. 2018. V. 125. No. 3. P. 372.
  33. Janotti A., Van de Walle C.G. // Rep. Progr. Phys. 2009. V. 72. P. 126501.
  34. Zhang M., Averseng F., Krafft J.-M. et al. // J. Phys. Chem. C. 2020. V. 124. No. 23. P. 12696.
  35. Guo H.-L., Zhu Q., Wu X.-L. et al. // Nanoscale. 2015. V. 7. P. 7216.
  36. Chen L., Zhai B., Huang Y.M. // Catalysts. 2020. V. 10. P. 1163.
  37. Wang J., Xiang L., Komarneni S. // Ceram. Internat. 2018. V. 44. No. 7. P. 7357.
  38. Kröger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland Publ. Cj., 1964.
  39. Hauffe K., Reactionen in und an FestenStoffen, Berlin: Springer, 1955.
  40. Moore W.L., Williams E.L. // Discuss. Faraday Soc. 1959. V. 28. P. 86.
  41. Leonov N.B., Komissarov M.D., Parfenov P.S. et al. // Appl. Phys. A. 2022. V. 128. P. 665.
  42. Tomaev V.V., Polischuk V.A., Vartanyan T.A. et al. // Opt. Spectrosc. 2021. V. 129. No. 9. P. 1033.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (852KB)
3.

Baixar (1MB)
4.

Baixar (857KB)
5.

Baixar (101KB)

Declaração de direitos autorais © В.В. Томаев, В.А. Полищук, Н.Б. Леонов, Т.А. Вартанян, 2023