Dynamics of potential difference changes in a biocomposite microsection for different temperature gradients
- Autores: Kamalova N.S.1, Matveev N.N.1, Evsikova N.Y.1, Lisitsyn V.I.1
-
Afiliações:
- Voronezh State University of Forestry and Technologies
- Edição: Volume 87, Nº 9 (2023)
- Páginas: 1322-1326
- Seção: Articles
- URL: https://edgccjournal.org/0367-6765/article/view/654616
- DOI: https://doi.org/10.31857/S0367676523702320
- EDN: https://elibrary.ru/JSWUNO
- ID: 654616
Citar
Resumo
The method of formalized modeling revealed the complex nature of the dependence of the parameters of the process of rearrangement of the biocomposite microstructure on the temperature gradient. Based on the analysis of the dynamics of changes in the potential difference formed along the thickness of the birch wood microcut, the parameters of the biocomposite polarization process for various temperature gradients have determined.
Sobre autores
N. Kamalova
Voronezh State University of Forestry and Technologies
Autor responsável pela correspondência
Email: meetvgltu3@vglta.vrn.ru
Russia, 394087, Voronezh
N. Matveev
Voronezh State University of Forestry and Technologies
Email: meetvgltu3@vglta.vrn.ru
Russia, 394087, Voronezh
N. Evsikova
Voronezh State University of Forestry and Technologies
Email: meetvgltu3@vglta.vrn.ru
Russia, 394087, Voronezh
V. Lisitsyn
Voronezh State University of Forestry and Technologies
Email: meetvgltu3@vglta.vrn.ru
Russia, 394087, Voronezh
Bibliografia
- Шестаковский П. // Новые технологии. 2010. № 12. С. 131.
- Гриднев С.А., Калинин Ю.Е., Макагонов В.А., Шуваев А.С. // Альтерн. энерг. и экология. 2013. № 01/2(118). С. 117.
- Kumar A., Vaish R., Kumar S. at al. // Energy Technol. 2018. V. 6. No. 5. P. 943.
- Ryu H., Kim S.-W. // Small. 2021. V. 17. No. 9. Art. No. 1903469.
- Zhang D., Wu H., Bowen C.R., Yang Y. // Small. 2021. V. 17. No. 51. Art. No. 2103960.
- Солнышкин А.В., Сергеева О.Н., Шустова О.А. и др. // Письма в ЖТФ. 2021. Т. 47. № 9. С. 7; Solnyshkin A.V., Sergeeva O.N., Shustova O.A. et al. // Techn. Phys. Lett. 2021. V. 47. No. 6. P. 466.
- Popravko N.G., Sidorkin A.S., Korotkov L.N. et al. // Ferroelectrics. 2022. V. 591. No. 1. P. 100.
- Чуприн А., Гаврилов Р., Генералов С., Никифоров С. // Наноиндустрия. 2016. № 2(64). С. 48.
- Баженов В.А. Пьезоэлектрические свойства древесины. М.: Изд-во АН СССР, 1959.
- Эриньш П.П. // Химия древесины. 1977. № 1. С. 8.
- Erins P., Cinite V., Jakobsons M., Gravitis J. // Appl. Polym. Symp. 1976. No. 26. P. 1117.
- Матвеев Н.Н., Лисицын В.И., Камалова Н.С., Евсикова Н.Ю. // Пласт. массы. 2022. Т. 1. № 1–2. С. 34.
- Matveev N.N., Nguyen H.T., Kamalova N.S. et al. // St. Petersb. Polytech. State Univer. J. Phys. Math. 2018. V. 11. No. 3. P. 9.
- Matveev N.N., Kamalova N.S., Evsikova N.Yu. et al. // Ferroelectrics. 2018. V. 536. No. 1. P. 187.
- Nash J.E., Sutcliffe J.V. // J. Hydrology. 1970. V. 10. No. 3. P. 282.
Arquivos suplementares
