Spectra and angle distributions of the atmospheric neutrinos and muons from the charm particle decays

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new calculation of the prompt component of atmospheric leptons — muon neutrinos and muons from the decays of charmed particles is performed for the same hadron cascade model that was used in calculating the characteristics of atmospheric leptons from the decays of π- and K-mesons. Spectral zenith-angular distributions of prompt and (π, K)-leptons are obtained. The cross-energy intervals are found for which the prompt lepton fluxes contribution comparably to the fluxes of (π, K)-muons and neutrinos. The possibility is shown of the prompt neutrinos detecting at energies much lower of the cross-energy.

Texto integral

Acesso é fechado

Sobre autores

M. Sorokovikov

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: sorokovikov@jinr.ru
Rússia, Dubna

A. Morozova

Joint Institute for Nuclear Research; Irkutsk State University

Email: sorokovikov@jinr.ru
Rússia, Dubna; Irkutsk

T. Sinegovskaya

Irkutsk State Transport University

Email: sorokovikov@jinr.ru
Rússia, Irkutsk

S. Sinegovsky

Joint Institute for Nuclear Research; Irkutsk State University

Email: sorokovikov@jinr.ru
Rússia, Dubna; Irkutsk

Bibliografia

  1. Аврорин А.В., Аврорин А.Д., Айнутдинов В.М. и др. (Коллаборация Baikal-GVD) // ЖЭТФ. 2022. Т. 161. № 4. С. 476; Avrorin A.V., Avrorin A.D., Aynutdinov V.M. et al. (Baikal-GVD Collaboration) // JETP. 2022. V. 134. No. 4. P. 399.
  2. Аврорин А.В., Аврорин А.Д., Айнутдинов В.М. и др. (Коллаборация Baikal-GVD) // Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1016; Avrorin A.D., Avrorin A.V., Aynutdinov V.M. et al. (Baikal-GVD Collaboration) // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 921.
  3. Abbasi R., Ackermann M., Adams J. et al. (IceCube Collaboration) // Astrophys. J. 2022. V. 928. No. 1. Art. No. 50.
  4. Albert A., Alves S., Andre M. et al. (ANTARES Collaboration) // Phys. Lett. B. 2021. V. 816. Art. No. 136228.
  5. Ageron M., Aiello S., Ameli F. et al. (KM3NeT Collaboration) // Eur. Phys. J. C. 2020. V. 80. No. 2. Art. No. 99.
  6. Кайдалов А.Б., Пискунова О.И. // Ядерн. физика. 1986. Т. 43. С. 1545.
  7. Кайдалов А.Б. // Ядерн. физика. 2023. Т. 66. № 11. С. 2044; Kaidalov A.B. // Phys. Atom. Nucl. 2003. V. 66. No. 11. P. 1994.
  8. Sinegovsky S.I., Sorokovikov M. N. // Eur. Phys. J. C. 2020. V. 80. Art. No. 34.
  9. Kochanov A.A., Sinegovskaya T.S., Sinegovsky S.I. // Astropart. Phys. 2008. V. 30. P. 219.
  10. Sinegovskaya T.S., Morozova A.D., Sinegovsky S.I. // Phys. Rev. D. 2015. V. 91. Art. No. 063011.
  11. Sinegovsky S.I., Kochanov A.A., Sinegovskaya T.S. et al. // Int. J. Mod. Phys. A. 2010. V. 25. P. 3733.
  12. Кочанов А.А., Синеговская Т.С., Синеговский С.И. // ЖЭТФ. 2013. Т. 143. С. 459; Kochanov A.A., Sinegovskaya T.S., Sinegovsky S.I. // JETP. 2013. V. 116. P. 395.
  13. Морозова А.Д., Кочанов А.А., Синеговская Т.С. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 4. С. 555; Morozova A.D, Kochanov A.A., Sinegovskaya T.S. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 4. P. 516.
  14. Кочанов А.А., Морозова А.Д., Синеговская Т.С. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1030; Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 933.
  15. Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012054.
  16. Кочанов А.А., Морозова А.Д., Синеговская Т.С. и др. // Изв. РАН. Cер. физ. 2021. Т. 85. № 4. С. 570; Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 433.
  17. Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // arXiv: 2109.13000. 2021.
  18. Калмыков Н.Н., Остапченко С.С., Павлов А.И. // Изв. РАН. Сер. физ. 1994. Т. 58. № 12. С. 21; Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. // Bull. Russ. Acad. Sci. Phys. 1994. V. 8. P. 1966.
  19. Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. // Nucl. Phys. B. (Proc. Suppl.) 1997. V. 52. P. 17.
  20. Ostapchenko S. // Nucl. Phys. B. (Proc. Suppl.). 2008. V. 175—176. P. 73.
  21. Кимель Л.Р., Мохов Н.В. // Изв. вузов. Физ. 1974. Т. 17. № 10. С. 17.
  22. Калиновский А.Н., Мохов Н.В., Никитин Ю.П. Прохождение частиц высоких энергий через вещество. М.: Энергоатомиздат, 1985. 248 с.
  23. Gaisser T.K. // Astropart. Phys. 2012. V. 35. P. 801.
  24. Aartsen M.G., Ackermann M., Adams J. et al. (IceCube Collaboration) // Eur. Phys. J. C. 2015. V. 75. Art. No. 116.
  25. Aartsen M.G., Ackermann M., Adams J. et al. (IceCube Collaboration) // Eur. Phys. J. C. 2017. V. 77. Art. No. 692.
  26. Аракелян Г.Г. // Ядерн. физика. 1998. Т. 61. С. 1682; Arakelyan G. H. // Phys. Atom. Nucl. 1998. V. 61. No. 9. P. 1570.
  27. Fedynitch A., Riehn F., Engel R. et al. // Phys. Rev. D. 2019. V. 100. Art. No. 103018.
  28. Bhattacharya A., Enberg R., Jeong Y.S. et al. // JHEP. 2016. V. 2016. No. 11. Art. No. 167.
  29. Gauld R., Rojo J., Rottoli L. et al. // JHEP. 2016. V. 2016. No. 2. Art. No. 130.
  30. Zenaiev O., Garzelli M.V., Lipka K. et al. (PROSA Collaboration) // JHEP. 2020. V. 2020. No. 4. Art. No. 118.
  31. Garzelli M.V., Moch S., Zenaiev O. et al. (PROSA Collaboration) // JHEP. 2017. V. 2017. No. 5. Art. No. 4.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Differential spectra of atmospheric leptons near the vertical: the broad band (a) is the spectrum of muon (D, Λc)-neutrinos in the QGSM + H3a model; the lines along the band are the results of calculations co H3a spectra of other models of birth of charmed particles; two curves crossing the wide band are spectra of (π, Κ)-neutrinos for the CM and QGSJET II-03 models; narrow bands are (D, Λc)-neutrinos (b) and muons (c) crossing the (π, Κ)-lepton lines. The spectra of (π, Κ)-leptons are calculated for two models of hadron-nuclear interactions - KM + H3a (solid line) and QGSJET II-03 + H3a (dashed line)

Baixar (332KB)
3. Fig. 2. Spectral zenith-angle enhancement of differential fluxes of atmospheric neutrinos (a) and muons (b) calculated for zenith angle θ ≈ 84.26°: 1 - (π, K)-leptons (KM); 2 - total spectrum of KM + QGSM; 3 - (D, Λc)-leptons (QGSM); panels below (a, b) - (π, K)-leptons with better resolution, which show non-monotonicity of anisotropy reflecting the successive ‘switching on’ and saturation of the dominant sources - from contributions from two-particle decays of charged pions and kaons, to three-particle half-lepton decays of charged and neutral kaons. This leads to a broad distribution with ‘humps’; the 2nd hump (muons) just corresponds to the rare Gi/G ≃ 4 × 10-4) semilepton decay of the short-lived neutral kaon KS (lifetime 0.9 × 10-10 s). Influence of the hadron cascade model on the spectral zenith-angle enhancement of the fluxes of atmospheric neutrinos (c) and muons (d): 1 - (π, K)-leptons for the CM model; 2 - (π, K)-leptons for the QGSJET II-03 model; 3 - total spectrum of CM + QGSM; 4 - the same as 3, but for the QGSJET II-03 + QGSM model

Baixar (426KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024