Dynamics of the electromagnetic field near the edge of a stripe line during its charging
- Autores: Kornienko V.N.1, Kulagin V.V.1,2
-
Afiliações:
- Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Edição: Volume 88, Nº 2 (2024)
- Páginas: 273-276
- Seção: Wave Phenomena: Physics and Applications
- URL: https://edgccjournal.org/0367-6765/article/view/654763
- DOI: https://doi.org/10.31857/S0367676524020192
- EDN: https://elibrary.ru/RQYFVL
- ID: 654763
Citar
Resumo
The spatiotemporal distribution of the electromagnetic field near the edge of the strip line when it is charged to a constant value of the voltage between the strips is studied by the methods of a computational experiment. The conditions under which a monopolar electromagnetic pulse is emitted into free space are revealed.
Palavras-chave
Texto integral

Sobre autores
V. Kornienko
Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: korn@cplire.ru
Rússia, Moscow
V. Kulagin
Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: korn@cplire.ru
Rússia, Moscow; Moscow
Bibliografia
- Архипов Р.М., Архипов М.В., Розанов Н.Н. // Квант. электрон. 2020. Т. 50. № 9. С. 801.
- Popov N.L., Vinogradov A.V. // Foundations. 2021. V. 1. No. 2. P. 169.
- Фещенко Р.М. // ЖЭТФ. 2023. Т. 163. № . 4. С. 461; Feshchenko R.M. // JETP. 2023. V. 136. No. 4. P. 406.
- Гуляев Ю.В., Черепенин В.А., Вдовин В.А. и др. // Радиотехн. и электрон. 2015. Т. 60. № 10. С. 1051; Gulyaev Y.V., Cherepenin V.A., Vdovin V.A. et al. // J. Commun. Technol. Electron. 2015. V. 60. No. 10. P. 1097.
- Гуляев Ю.В., Черепенин В.А., Таранов И.В. и др. // Радиотехн. и электрон. 2020. Т. 65. № 2. С. 189; Gulyaev Y.V., Cherepenin V.A., Taranov I.V. et al. // J. Commun. Technol. Electron. 2020. V. 65. No. 2. P. 193.
- You D., Jones R.R., Bucksbaum P.H. // Opt. Lett. 1993. V. 18. No. 4. P. 290.
- You D., Bucksbaum P.H. // J. Opt. Soc. Amer. B. 1997. V. 14. No. 7. P. 1651.
- Wu H.–C., Meyer-ter-Vehn J. // Nature Photonics. 2012. V. 6. P. 304.
- Xu J., Shen B., Zhang X. et al. // Sci. Reports. 2018. V. 8. Art. No. 2669.
- Kuratov A.S., Brantov A.V., Kovalev V.F., Bychenkov V. Yu. // Phys. Rev. E. 2022. V. 106. Art. No. 035201.
- Fedorov V.M., Ostashev V.E., Tarakanov V.P., Ul’yanov A.V. // J. Phys. Conf. Ser. 2017. V. 830. Art. No. 012020.
- http://jre.cplire.ru/jre/mar17/8/text.pdf.
- Бэдсел Ч., Ленгдон А. Физика плазмы и численное моделирование. М.: Энергоатомиздат, 1989. 452 с.
- Taflove A. Computational electrodynamics. The finite-difference time-domain method. London: ArtechHouse, 1995. P. 188.
Arquivos suplementares
Arquivos suplementares
Ação
1.
JATS XML
2.
Fig. 1. Schematic representation of the system under consideration. 1, 2 - ideally conducting strips, 3 - voltage source, 4 - key
Baixar (50KB)
3.
Fig. 2. Dependence of the magnetic field component on the longitudinal coordinate at different (consecutive) moments of time
Baixar (114KB)
