Estimation of gas saturated sediments parameters in shallow water using vector receiver

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A scheme for estimating parameters of gas-saturated sediments in shallow waters based on signals from moving noise source is proposed and tested on experimental data. Advantages of joint use of information about pressure and vertical component of particle velocity in solving the considered problem are discussed.

Texto integral

Acesso é fechado

Sobre autores

M. Ivanov

Lomonosov Moscow State University

Email: shurup@physics.msu.ru

Department of acoustics, Faculty of Physics

Rússia, Moscow

P. Mukhanov

Lomonosov Moscow State University

Email: shurup@physics.msu.ru

Department of acoustics, Faculty of Physics

Rússia, Moscow

А. Shurup

Lomonosov Moscow State University; Shirshov Institute of Oceanology of the Russian Academy of Sciences; The Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: shurup@physics.msu.ru

Department of acoustics, Faculty of Physics

Rússia, Moscow; Moscow; Moscow

Bibliografia

  1. Гончаренко Б.И., Дмитриев К.В., Сергеев С.Н., Шуруп А.С. // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 777.
  2. Vedenev A.I., Kochetov O.Yu., Lunkov A.A. et al. // J. Mar. Sci. Eng. 2023. V. 11. Art. No. 1079.
  3. Рожин Ф.В., Тонаканов О.С. Общая гидроакустика. М.: МГУ, 1988. 160 с.
  4. Petnikov V.G., Grigorev V.A., Lunkov A.A., Sidorov D.D. // J. Acoust. Soc. Amer. 2022. V. 151. No. 4. P. 2297.
  5. Гончаренко Б.И., Веденев А.И., Медведева Е.В., Шуруп А.С. Докл. XVII школы-семин. им. акад. Л.М. Бреховских, совмещенной с XXXIII сессией Российского акустического общества. М.: ГЕОС, 2020. С. 85.
  6. Луньков А.А., Петников В.Г., Черноусов А.Д. // Акуст. журн. 2015. Т. 61. № 6. С. 745; Lun’kov A.A., Petnikov V.G., Chernousov A.D. // Acoust. Phys. 2015. V. 61. No. 6. P. 707.
  7. Гордиенко В.А. Векторно-фазовые методы в акустике. М.: Физматлит, 2007.
  8. Медведева Е.В., Гончаренко Б.И., Шуруп А.С. // Изв. РАН. Сер. физ. 2020. T. 84. № 2. C. 278; Medvedeva E.V., Goncharenko B.I., Shurup A.S. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 2. P. 220.
  9. Guarino A. G. L. Geoacoustic inversion techniques utilizing acoustic vector sensors and results from the Monterey bay shelf. PhD diss. Monterey, 2022.
  10. Гончаренко Б.И., Захаров Л.Н. // Акуст. журн. 1974. Т. 25. № 4. С. 531.
  11. Kirkpatrick S., Gelatt C.D., Vecchi M.P. // Science. 1983. V. 220. P. 671.
  12. Sambridge M., Mosegaard K. et al. // Rev. Geophys. 2002. V. 40. Art No. 1009.
  13. Ingber L. // Control. Cybern. 1996. V. 25. No. 1. P. 33.
  14. Pereselkov S.A., Kuz’kin V.M. // J. Acoust. Soc. Amer. 2022. V. 151. No. 2. P. 666.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. An example of the ε(cb) dependencies obtained in the presence of noise (the noise level was set to 30%), using different combinations of initial data (a); the values ​​of relative deviations of the reconstructed and true values ​​of the speed of sound in the bottom, averaged over 500 noise realizations (b).

Baixar (158KB)
3. Fig. 2. The combined receiving module (CRM) used in the experiment (a); schematic diagram of the measurements carried out at the Moscow State University hydroacoustic testing ground with a moving boat (b).

Baixar (296KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024