Capabilities of optothermal traps for space ordering of microscopic objects

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Experimental results on the formation of ordered structures of latex microparticles with diameters of 3 and 5 micrometers using arrays of point optothermal traps are presented. To implement these traps, the working area of the phase mask was divided into sub-elements, for each of which a specific distribution of phase delay of the prism (wedge) was specified.

Texto integral

Acesso é fechado

Sobre autores

А. Mayorova

Lebedev Physical Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: mayorovaal@smr.lebedev.ru

Samara Branch

Rússia, Samara

S. Kotova

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Rússia, Samara

N. Losevsky

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Rússia, Samara

D. Prokopova

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Rússia, Samara

S. Samagin

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

Rússia, Samara

Bibliografia

  1. Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
  2. Jing P., Liu Y., Keeler E.G. et al. // Biomed. Opt. Express. 2018. V. 9. P. 771.
  3. Li P., Yu H., Wang X. et al. // Opt. Express. 2021. V. 29. P. 11144.
  4. Lu F., Gong L., Kuai Y. et al. // Photon. Res. 2022. V. 10. P. 14.
  5. Guex A.G., Di Marzio N., Eglin D. et al. // Mater. Today Bio. 2021. V. 10. Art. No. 100110.
  6. Yoo J., Kim J., Lee J., Kim H.H. // iScience. 2023. V. 26. No. 11. Art. No. 108178.
  7. Минаев Н.В., Юсупов В.И., Чурбанова Е.С. и др. // Прибор. и техн. экспер. 2019. № 1. С. 153.
  8. Юсупов В.И., Жигарьков В.С., Чурбанова Е.С. и др. // Квант. электрон. 2017. Т. 47. № 12. С. 1158.
  9. Zhang D., Ren Y., Barbot A. et al. // Matter. 2022. V. 5. No. 10. P. 3135.
  10. Song Y., Yin J., Huang W., et al. // Trends Analyt. Chem. 2023. Art. No. 117444.
  11. Rodrigo J.A., Martínez-Matos Ó., Alieva T. // Photon. Res. 2022. V. 10. P. 2560.
  12. Afanasiev K., Korobtsov A., Kotova S. et al. // J. Phys. Conf. Ser. 2013. V. 414. Art. No. 012017.
  13. Rubinsztein-Dunlop H., Forbes A., Berry M. et al. // J. Optics. 2017. V. 19. Art. No. 013001.
  14. Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1685, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1434.
  15. Kotova S.P., Коrobtsov A.V., Losevsky N.N. et al. // J. Quant. Spectrosc. Radiat. 2021. V. 268. Art. No. 107641.
  16. Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1682, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1767.
  17. Прокопова Д.В., Котова С.П., Самагин С.А. // Изв. РАН. Сер. Физ. 2021. Т. 85. № 8. С. 1205, Prokopova D.V., Kotova S.P., Samagin S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 928.
  18. Zemánek P., Volpe G., Jonáš A., Brzobohatý O. // Adv. Opt. Photon. 2019. V. 11. No. 3. P. 577.
  19. Zenteno-Hernandez J.A., Lozano J.V., Sarabia-Alonso J.A. et al. // Opt. Lett. 2020. V. 45. P. 3961.
  20. Hosokawa Ch., Tsuji T., Kishimoto T. et al. // J. Phys. Chem. C. 2020. V. 124. P. 8323.
  21. Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
  22. Kollipara P., Chen Z., Zheng Y. // ACS Nano. 2023. V. 17. P. 7051.
  23. Chen Z., Li J., Zheng Y. // Chem. Rev. 2021. V. 122. P. 3122.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Phase distributions (a; c; d; g) and the corresponding intensity distributions (b; d; f; h).

Baixar (692KB)
3. Fig. 2. Phase masks and corresponding intensity distributions in the observation plane near the focal plane of the lens. Distances are indicated as fractions of the focal length of the lens.

Baixar (1MB)
4. Fig. 3. Stills from a video illustrating the process of transferring micro-objects to an array of light traps and aligning them into intensity maxima. Top row: 4×4 trap; particle diameter: 3 μm. Bottom row: hexagonal array of 19 traps; particle diameter: 5 μm.

Baixar (476KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024