Orientational relaxation of ferromagnetic anisotropic colloidal particles in a magnetic fluid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Permalloy rod-shaped anisotropic nanoparticles were used to study orientational relaxation in polymethylsiloxane magnetic fluid. A magnetorheological effect was obtained at different magnitudes and frequencies of exposure to a magnetic field, and the time of structural relaxation after removal of the field was assessed.

Texto integral

Acesso é fechado

Sobre autores

Y. Filippova

Moscow State Pedagogical University; Lomonosov Moscow State University

Autor responsável pela correspondência
Email: yufi26@list.ru
Rússia, Moscow; Moscow

О. Yakusheva

Moscow State Pedagogical University

Email: yufi26@list.ru
Rússia, Moscow

A. Papugaeva

Moscow State Pedagogical University

Email: yufi26@list.ru
Rússia, Moscow

Bibliografia

  1. Такетоми С., Тикатзуми С. Магнитные жидкости. М.: Мир, 1993. 272 c.
  2. Sütterlin S., Bölke D., Ehresmann M. et al. // CEAS Space J. 2024. doi: 10.1007/s12567-024-00539-x.
  3. Sabzi Dizajyekan B., Jafary A., Vafaie-Sefti V. et al. // Sci. Reports. 2024. V. 14. No. 1. Art. No.1296.
  4. Немцева М.П., Филиппов Д.В., Федорова А.А. Реологические свойства коллоидных систем. Иваново: ИГХТУ, 2016. 80 с.
  5. López-López M. T., Kuzhir P., Bossis G. // J. Rheology. 2009. V. 53. No. 1. P. 115.
  6. Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. C. 315, Yerin C.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 272.
  7. Zubarev A.Y., Iskakova L.Y. // J. Magn. Magn. Mater. 2023. V. 588. P. 171448.
  8. Испирян А.Г. // Наука. Инновации. Технологии. 2018. № . 2. P. 49.
  9. Филиппова Ю.А., Папугаева А.В., Панов Д.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. C. 1813, Filippova Y.A., Papugaeva A.V., Panov D.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1885.
  10. Шлиомис М.И. // УФН. 974. Т. 112. № . 3. С. 427.
  11. Филиппова Ю.А., Бижецкий А.С., Папугаева А.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. C. 1452, Filippova Y.A., Bizhetskiy A.S., Popugaeva A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 87. No. 10. P. 1483.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Photographs of the orientation of FeNi SNP aggregates in distilled water in a Nikon Eclipse LV100 optical microscope: without an external magnetic field (a), under the influence of a magnetic field (b).

Baixar (628KB)
3. Fig. 2. Dynamic viscosity η as a function of angular frequency ω for samples with SNPs of different lengths: 9 (a), 6 (b), and 1.3 μm (c). The magnetic field strength B varied from 0 to 1 T. Comparison of initial viscosity values ​​for samples with different degrees of anisotropy at B = 0 T (d). The mass concentration of SNPs is 0.25%.

Baixar (768KB)
4. Fig. 3. Dynamic viscosity η as a function of angular frequency ω for a sample with 9 μm long SLFs at two mass concentrations: 0.25 (a) and 0.5 wt.% (b). The magnetic field strength B varied from 0 to 1 T.

Baixar (329KB)
5. Fig. 4. Dependence of dynamic viscosity on the magnetic field strength at a frequency of ω = 0.05 s-1 for SNPs of 9 μm length and two values ​​of SNP concentration.

Baixar (116KB)
6. Fig. 5. Dependence of the dynamic viscosity η of MF on the angular frequency ω for a sample with SNPs of 1.3 μm length: without applying a magnetic field, at B = 0.25 T, after removing the magnetic field: after 2 and 30 min. Mass. content of SNPs% = 0.25.

Baixar (214KB)
7. Fig. 6. Dependence of ln(η(t) - η∞) on time t.

Baixar (104KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024