Magnetic properties and structure features of nanocomposites based on ferrites CoFe₂O₄, NiFe₂O₄, CuFe₂O₄ synthesized in low temperature underwater plasma

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Methods of X-ray diffraction and Mössbauer spectroscopy in combination with measurements of magnetic characteristics were used to study the crystal structure, morphology and magnetic properties of nanocomposite powders based on transition metals Ni, Co, Cu, Fe, first synthesized in low cold temperature underwater plasma. The results obtained indicate the possibility of synthesizing nanocomposites with a given content of ferrites NiFe₂O₄, CoFe₂O₄, Ni1-xCuхFe2O4, which provide low values of the ferromagnetic resonance linewidth, as well as ε-Fe₂O₃, which exhibits high frequency resonance in the millimeter range of electromagnetic radiation.

Sobre autores

M. Shipko

Lenin Ivanovo State University of Power Engineering

Email: avlada5577@gmail.com
Rússia, Ivanovo, 153003

M. Stepovich

Tsiolkovsky Kaluga State University

Email: avlada5577@gmail.com
Rússia, Kaluga, 248023

A. Khlustova

G. A Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: avlada5577@gmail.com
Rússia, Ivanovo, 153045

A. Agafonov

G. A Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: avlada5577@gmail.com
Rússia, Ivanovo, 153045

N. Sirotkin

G. A Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: avlada5577@gmail.com
Rússia, Ivanovo, 153045

E. Savchenko

National University of Science and Technology “MISiS”

Email: avlada5577@gmail.com
Rússia, Moscow, 119049

Bibliografia

  1. Агафонов А.В., Сироткин Н.А., Титов В.А. и др. // Журн. неорг. химии. 2022. Т. 67. № 3. С. 271; Agafonov A.V., Sirotkin N.A., Titov V.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. No. 3. P. 253.
  2. Хлюстова А.В., Шипко М.Н., Сироткин Н.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 614; Khlyustova A.V., Shipko M.N., Sirotkin N.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 509.
  3. Sirotkin N.A., Khlyustova A.V., Titov V.A. et al. // Plasma Chem. Plasma Process. 2022. V. 42. № 1. P. 191.
  4. Хлюстова А.В., Шипко М.Н., Степович М.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1517; Khlyustova A.V., Shipko M.N., Stepovich M.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1549.
  5. Duque J.G.S., Souza E.A., Meneses C. et al. // Physica. B. Cond Matter. 2007. V. 398. No. 2. P. 287.
  6. Дмитриев А.И. // Науч.-тех. вестн. инф. технол. механ. и оптики. 2017. Т. 17. № 5. С. 805.
  7. Князев Ю.В., Якушкин С.С., Балаев Д.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 959; Knyazev Yu.V., Yakushkin S.S., Balaev D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 875.
  8. Карпова Т.С., Васильев В.Г., Владимирова Е.В. и др. // Изв. РАН. Сер. физ. 2011. Т. 75. № . 8. С. 1097; Karpova T.S., Vasil’ev V.G., Vladimirova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2011. V. 75. No. 8. P. 1036.
  9. Mazaleyrat F., Varga L.K. // J. Magn. Magn. Mater. 2000. V. 215. P. 253.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024