Generation of Terahertz Radiation by Atomic Systems at Different Ratios of Frequencies between Components of Interacting Two-Color Laser Fields
- 作者: Stremoukhov S.Y.1,2
 - 
							隶属关系: 
							
- Lomonosov Moscow State University
 - Kurchatov Institute
 
 - 期: 卷 88, 编号 6 (2024)
 - 页面: 941-945
 - 栏目: Quantum Optics and Coherent Spectroscopy
 - URL: https://edgccjournal.org/0367-6765/article/view/654662
 - DOI: https://doi.org/10.31857/S0367676524060156
 - EDN: https://elibrary.ru/PGCKZW
 - ID: 654662
 
如何引用文章
详细
The generation of terahertz radiation by atomic systems interacting with femtosecond two-color laser fields (ω1 + ω2) formed by the fundamental harmonic of a laser source (ω1) and radiation with frequencies varying over a wide range (ω2) is studied. It is shown that the efficiency of the generation of terahertz radiation grows when ratio of frequencies between components of the two-color field is close but not equal to 2, and difference |ω2 – 2ω1| corresponds to the terahertz range. A numerical experiment is performed using laser sources with wavelengths from the near- to far-infrared range.
全文:
作者简介
S. Stremoukhov
Lomonosov Moscow State University; Kurchatov Institute
							编辑信件的主要联系方式.
							Email: sustrem@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow; Moscow						
参考
- Horvat J., Lewis R.A. // Optics Lett. 2009. V. 34. No. 14. P. 2195.
 - Knyazev B.A., Kulipanov G.N., Vinokurov N.A. // Meas. Sci. Technol. 2010. V. 21. No. 5. Art. No. 054017.
 - Byrd J. M., Leemans W.P., Loftsdottir A. et al. // Phys. Rev. Lett. 2002. V. 89. No. 22. Art. No. 224801.
 - Pérez S., González T., Pardo D., Mateos J. // J. Appl. Phys. 2008. V. 103. No. 9. Art. No. 094516.
 - Ozyuzer L., Koshelev A.E., Kurter C. et al. // Science. 2007. V. 318. No. 5854. P. 1291.
 - Williams B.S. // Proc. ACP. 2008. Art. No. SuG3.
 - Kim K.Y., Taylor A.J., Glownia J.H., Rodriguez G. // Nature Photonics. 2008. V. 2. No. 10. P. 605.
 - Dai J., Karpowicz N., Zhang X.C. // Phys. Rev. Lett. 2009. V. 103. Art. No. 023001.
 - Clerici M., Peccianti M., Schmidt B.E. et al. // Phys. Rev. Lett. 2013. V. 110. No. 25. Art. No. 253901.
 - Cook D.J., Hochstrasser R.M. // Optics Lett. 2000. V. 25. No. 16. P. 1210.
 - Xie X., Dai J., Zhang X.C. // Phys. Rev. Lett. 2006. V. 96. No. 7. Art. No. 075005.
 - Wang W., Gibbon M.P., Sheng Z.-M., Li Y.-T. // Phys. Rev. Lett. 2015. V. 114. No. 25. Art. No. 253901.
 - Andreev A.V., Angeluts A.A., Balakin A.V. et al. // IEEE Trans. Ter. Sci. Technol. 2020. V. 10. No. 1. P. 85.
 - Lambert G., Vodungbo B., Gautier J. et al. // Nature Commun. 2015. V. 6. P. 6167.
 - Wang W.M., Li Y.-T., Sheng Z.-M. et al. // Phys. Rev. E. 2013. V. 87. No. 3. Art. No. 033108.
 - Zhang L.L., Wang W.-M., Wu T. et al. // Phys. Rev. Lett. 2017. V. 119. No. 23. P. 235001.
 - Wang W.M., Sheng Z.-M., Li Y.-T. et al. // Phys. Rev. A. 2017. V. 96. No. 2. Art. No. 023844.
 - Kostin V.A., Laryushin I.D., Silaev A.A., Vvedenskii N.V. // Phys. Rev. Lett. 2016. V. 117. No. 3. Art. No. 035003.
 - Zhou Z., Iv Z., Zhang D. et al. // Phys. Rev. A. 2020. V. 101. No. 4. Art. No. 043422.
 - Andreev A.V., Stremoukhov S.Yu., Shoutova O.A. // Eur. Phys. J. D. 2012. V. 66. P. 16.
 - Stremoukhov S., Andreev A., Vodungbo B. et al. // Phys. Rev. A. 2016. V. 94. Art. No. 013855.
 - Stremoukhov S.Yu. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 1. P. 38.
 - Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 3. Квантовая механика (нерелятивистская теория). М.: Физматлит, 2020.
 - Andreev A.V., Stremoukhov S.Yu. // Phys. Rev. A. 2013. V. 87. Art. No. 053416.
 - Стремоухов С.Ю. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 770; Stremoukhov S.Yu. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 646.
 - Migal E., Pushkin A., Bravy B. et al. // Optics Lett. 2019. V. 44. P. 2550.
 
补充文件
				
			
						
						
						
						
					




