Исследование кристаллической структуры интеркаляционного соединения Fe1/3TiS2 с использованием эволюционных алгоритмов и первопринципных расчетов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены первопринципные расчеты кристаллической структуры и магнитных свойств интеркаляционного соединения Fe1/3TiS2 с применением эволюционных алгоритмов машинного обучения. Выполнен учет спин-орбитального взаимодействия, рассчитаны зонная структура и плотность состояний.

Полный текст

Доступ закрыт

Об авторах

А. А. Чубарова

Федеральное государственное автономное образовательное учреждение высшего образования «Омский государственный университет имени Ф. М. Достоевского»

Автор, ответственный за переписку.
Email: chubarovaaa@omsu.ru
Россия, Омск

М. В. Мамонова

Федеральное государственное автономное образовательное учреждение высшего образования «Омский государственный университет имени Ф. М. Достоевского»

Email: chubarovaaa@omsu.ru
Россия, Омск

Список литературы

  1. Desai S.B., Madhvapathy S.R., Sachid A.B. et al. // Science. 2016. V. 354. No. 6308. P. 99.
  2. Mak K.F., Shan J. // Nature Photonics. 2016. V. 10. P. 216.
  3. Wang H., Zhang C., Chan W. et al. // Nature Commun. 2015. V. 6. Art. No. 8831.
  4. Binder J., Howarth J., Withers F. et al. // Nature Commun. 2019. V. 10. No. 1. Art. No. 2335.
  5. Liu Y., Wu J., Hackenberg K. P. et al. // Nature Energy. 2017. V. 2. Art. No. 17127.
  6. Wu X., Zhang H., Zhang J., Lou X.W. // Adv. Mater. 2021. V. 33. No. 33. Art. No. 2008376.
  7. Xu Y., Barani Z., Xiao P., Sudhindra S. et al. // Chem. Mater. 2022. V. 34. No. 19. P. 8858.
  8. Эмиров С.Н., Аливердиев А.А., Бейбалаев В.Д. и др. // Изв. РАН. Сер. физ. 2021. T. 85. № 9. C. 1273; Emirov S.N., Aliverdiev A.A., Beybalaev V.D. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 979.
  9. Zhang Q., Wee A.T.S., Liang Q. et al. // ACS Nano. 2021. V. 15. No. 2. P. 2165.
  10. Yang R., Mei L., Zhang Q. et al. // Nature Protocols. 2022. V. 17. No. 2. P. 358.
  11. Motizuki K., Suzuki N. // Springer Ser. Mater. Sciences. 1994. V. 27. P. 106.
  12. Choe J., Lee K., Huang C.L. et al. // Phys. Rev. B. 2019. V. 99. No. 6. Art. No. 064420.
  13. Silva R.S., Gainza J., Rodrigues J.E. et al. // J. Mater. Chem. C. 2022. V. 10. P. 15929.
  14. Checkelsky J.G., Le M., Morosan E. et al. // Matter Mater. Phys. 2008. V. 77. No. 1. Art. No. 014433.
  15. Motizuki K., Katoh K., Yanase A. // J. Physics C. 1986. V. 19. P. 495.
  16. Inoue M., Negishi H. // J. Phys. Chem. 1986. V. 90. No. 2. P. 235.
  17. Koyano M., Suezawa M., Watanabe H., Inoue M. // J. Phys. Soc. Japan. 1994. V. 63. P. 1114.
  18. Guo Y., Yan H., Gao G., Song Q. // Phys. B. 2010. V. 405. P. 277
  19. Baranov N.V., Sherokalova E.M., Selezneva N.V. et al. // J. Phys. Cond. Matter 2013. V. 25. No. 6. Art. No. 066004.
  20. Selezneva N.V., Baranov N.V., Sherokalova E.M. et al. // Phys. Rev. B. 2021. V. 104. No. 6. Art. No. 064411.
  21. Selezneva N.V., Sherokalova E.M., Podlesnyak A. et al. // Phys. Rev. Mater. 2023. V. 7. No. 1. Art. No. 014401.
  22. Romualdo S., Silva Jr., João E. Rodrigues // ACS Appl. Mater. Interfaces. 2023. V. 15. No. 43. P. 50290.
  23. Glass C.W., Oganov A.R., Hansen N. // Comp. Phys. Commun. 2006. V. 175. P. 713.
  24. Glass C.W., Oganov A.R. // J. Chem. Phys. 2006. V. 124. Art. No. 244704.
  25. Обамби М.А., Загребин М.А., Бучельников В.Д. // Изв. РАН. Сер. физ. 2023. T. 87. № 4. C. 481; Obambi M.A., Zagrebin M.A., Buchelnikov V.D. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 416.
  26. Макеев М.Ю., Мамонова М.В. // Изв. РАН. Сер. физ. 2023. T. 87. № 4. C. 493; Makeev M.Yu., Mamonova M.V. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 427.
  27. Kresse P.G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. No. 16. P. 11169.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Кристаллическая структура Fe0.33TiS2 в изометрической проекции а) – после проведения классических расчетов; б) – полученная с использованием машинного обучения; в) – полученная с использованием машинного обучения с учетом спин-орбитального взаимодействия.

Скачать (31KB)
3. Рис. 2. Зонная структура парамагнитного TiS2 (а); парамагнитного Fe0.33TiS2 (б) и ферромагнитного Fe0.33TiS2 (в).

Скачать (76KB)
4. Рис. 3. Плотность состояний (DOS) парамагнитного Fe0.33TiS2 для структур 1 – SDFT; 2 – SDFTML.

Скачать (36KB)
5. Рис. 4. Плотность состояний (DOS) ферромагнитного Fe0.33TiS2 (без учета спин-орбитального взаимодействия) для каждой компоненты спина 1 – SDFT; 2 – SDFTML.

Скачать (42KB)

© Российская академия наук, 2024