Magnetic nanoparticles produced by pulsed laser ablation of thin cobalt films in water

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The possibility of synthesizing nanoparticles by pulsed laser ablation of thin cobalt films in water is shown. The average size of the formed nanoparticles varies in the range of 70–1020 nm depending on the thickness of the ablated film. At film thicknesses less than 35 nm, the size dispersion of the nanoparticles

作者简介

I. Dzhun

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

俄罗斯联邦, Moscow, 119991

V. Nesterov

Lomonosov Moscow State University; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: nesterovvy@my.msu.ru

Lomonosov Moscow State University, Faculty of Physics

俄罗斯联邦, Moscow, 119991; Dolgoprudny, 141701

D. Shuleiko

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

俄罗斯联邦, Moscow, 119991

S. Zabotnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

俄罗斯联邦, Moscow, 119991

D. Presnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

俄罗斯联邦, Moscow, 119991

Yu. Alekhina

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

俄罗斯联邦, Moscow, 119991

E. Konstantinova

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

俄罗斯联邦, Moscow, 119991

N. Perov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

俄罗斯联邦, Moscow, 119991

N. Chechenin

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics; Faculty of Physics

俄罗斯联邦, Moscow, 119991

参考

  1. Lu A.-H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
  2. Long N.V., Yang Y., Teranishi T. et al. // Mater. Des. 2015. V. 86. P. 797.
  3. Liu X.Y., Gao Y.Q., Yang G.W. // Nanoscale. 2016. V. 8. P. 4227.
  4. Alonso-Domínguez D.D., Alvarez-Serrano I.I., Pico M.P. // J. Alloys. Compounds. 2017. V. 695. P. 3239.
  5. Blakemore J.D., Gray H.B., Winkler J.R., Mueller A.M. // ACS Catalysis. 2013. V. 3. No. 11. P. 2497.
  6. Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2014. V. 5. Art. No. 9028.
  7. Kunitsyna E.I., Allayarov R.S., Koplak O.V. et al. // ACS Sensors. 2021. V. 6. No. 12. P. 4315.
  8. Abdulwahid F.S., Haider A.J., Al-Musawi S. // Nano Rev. 2022. V. 17. No 11. Art. No. 2230007.
  9. Papis E., Rossi F., M. Raspanti M. et al. // Toxic. Lett. 2009. V. 189. P. 253.
  10. Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 41302.
  11. Ichiyanagi Y., Yamada S. // Polyhedron. 2005. V. 24. P. 2813.
  12. Mehdaoui B., Meffre A., Carrey J. et al. // Adv. Funct. Mat. 2011. V. 21. Art. No. 4573.
  13. Usov N.A., Gubanova E.M., Wei Z.H. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012044.
  14. Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П. и др. // ФТТ. 2023. Т. 65. № 7. С. 1100; Melnikov G. Yu, Lepalovskij V.N., Safronov A.P. et al. // Phys. Sol. St. 2023. V. 65. No. 7. P. 1100.
  15. Sánchez-López E., Gomes D., Esteruelas G. et al. // Nanomaterials. 2020. V. 10. Art. No. 292.
  16. Bose P., Bid S., Pradhan S.K. et al. // J. Alloys Compounds. 2002. V. 343. P. 192.
  17. Sun S., Murray C.B. // J. Appl. Phys. 1999. V. 85. P. 4325.
  18. Mathur S., Veith M., Sivakov V. et al. // Chem. Vap. Depos. 2002. V. 8. P. 277.
  19. Yin J.S., Wang Z.L. // Nanostruct. Mater. 1999. V. 10. P. 845.
  20. Becker J.A., Schafer R., Festag J.R. et al. // Surf. Rev. Lett. 1996. V. 3. P. 1121.
  21. Kurlyandskaya G.V., Portnov D.S, Beketov I.V. et al. // Bioch. Biophys. Acta. 2017. V. 1861. P. 1494.
  22. Blyakhman F.A., Buznikov N.A., Sklyar T.F. et al. // Sensors. 2018. V. 18. Art. No. 872.
  23. Li X.G., Chiba A., Takahashi S. et al. // Materials. 1997. V. 173. Art. No. 101.
  24. Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Advances. 2012. V. 2. Art. No. 022154.
  25. Курляндская Г.В., Архипов А.В., Бекетов И.В. и др. // ФТТ. 2023. Т. 65. № 6. С. 861; Kurlyandskaya G.V., Arkhipov A.V., Beketov I.V. et al. // Phys. Sol. St. 2023. V. 65. No. 6. P. 861.
  26. Hansen M.F., Vecchio K.S., Parker F.T. et al. // Appl. Phys. Lett. 2003. V. 82. P. 1574.
  27. Semaltianos N.G., Karczewski G. // ACS Appl. Nano Mater. 2021. V. 4. P. 6407.
  28. Amendola V., Riello P., Polizzi S. et al. // J. Mater. Chem. 2011. V. 21. P. 18665.
  29. Zhang H., Liang C., Liu J. et al. // Carbon. 2013. V. 55. P. 108.
  30. Franzel L., Bertino M.F., Huba Z.J., Carpenter E.E. // Appl. Surf. Sci. 2012. V. 261. P. 332.
  31. Amendola V., Scaramuzza S., Carraro F., Cattaruzza E. // J. Colloid Interface Sci. 2017. V. 489. P. 18.
  32. Zograf G.P., Zuev D.A., Milichko V.A. // J. Phys. Conf. Ser. 2016. V. 741. Art. No. 012119.
  33. Haustrup N., O’Connor G.M. // J. Nanosci. Nanotechnol. 2012. V. 12. No. 11. P. 8656.
  34. Bubb D.M., O’Malley S.M., Schoeffling J. et al. // Chem. Phys. Lett. 2013. V. 565. P. 65.
  35. Scaramuzza S., Zerbetto M., Amendola V. // J. Phys. Chem. C. 2016. V. 120. No. 17. P. 9453.
  36. Александров В.А. // Междунар. научн. журн. Альтернативная энергетика и экология. 2007. № 11. С. 160.
  37. Matthias E., Reichling M., Siegel J. // Appl. Phys. A. 1994. V. 58. P. 129.
  38. Perminov P.A., Dzhun I.O., Ezhov A.A. et al. // Laser Phys. 2011. V. 21. No. 4. P. 801.
  39. Liang J., Liu W., Li Y. et al. // Appl. Surf. Sci. 2018. V. 456. P. 482.
  40. Zabotnov S.V., Skobelkina A.V., Kashaev F.V. et al. // Sol. St. Phenom. 2020. V. 312. P. 200.
  41. Петров Ю.И. Кластеры и малые частицы. Москва: Наука, 1986.
  42. Santillán J.M.J., van Raap M.B.F., Zelis P.M. et al. // J. Nanopart. Res. 2015. V. 17. No. 2. Art. No. 86.
  43. Santillán J.M.J., Arboleda D.M., Coral D.F. et al. // ChemPhysChem. 2017. V. 18. No. 9. P. 1192.
  44. Ghaem E.N., Dorranian D., Sari A.H. // Physica E. 2020. V. 115. Art. No. 113670.
  45. Hu S., Meltonc C., Mukherjee D. // Phys. Chem. Chem. Phys. 2014. V. 16. Art. No. 24034.
  46. Zhu H.T., Luo J., Liang J.K. et al. // Physica B. 2008. V. 403. P. 3141.
  47. Makhlouf S.A. // J. Magn. Magn. Mater. 2002. V. 246. P. 184.
  48. Ghaem E.N., Dorranian D., Sari A.H. // Opt. Quantum Electron. 2021. V. 53. Art. No. 36.
  49. Svetlichnyi V.A., Shabalina A.V., Lapin I.N. et al. // Appl. Surf. Sci. 2018. V. 462. P. 226.
  50. Luna C., del Puerto Morales M., Serna C.J., Vázquez M. // Nanotech. 2003. V. 14. P. 268.
  51. Dutta P., Seehra M.S., Thota S., Kumar J. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 015218.
  52. Pal A.K., Chaudhuri S., Barua A.K. // J. Phys. D. Appl. Phys. 1976. V. 9. P. 2261.
  53. Huang H., Zhigilei L.V. // J. Phys. Chem. C. 2021. V. 125. No. 24. P. 13413.
  54. Inogamov N.A., Zhakhovsky V.V., Petrov Y.V. et al. // Contrib. Plasma Phys. 2013. V. 53. No. 10. P. 796.
  55. Zhilan L., Xinghai Ch., Jianxiong W. et al. // Mineral. Mag. 2022. V. 6. No. 2. P. 346.
  56. Lei Z., Chen X., Wang J. et al. // Mineral. Mag. 2022. V. 86. No. 2. P. 346.
  57. Wang R.-P., Zhou G.-W. Liu Y.-L. et al. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16827.
  58. Gao Y., Qin Y., Dong C., Li G. // Appl. Surf. Sci. 2014. V. 311. P. 413.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024