Magnetic nanoparticles produced by pulsed laser ablation of thin cobalt films in water
- Autores: Dzhun I.O.1, Nesterov V.Y.1,2, Shuleiko D.V.1, Zabotnov S.V.1, Presnov D.Е.1, Alekhina Y.A.1, Konstantinova E.A.1, Perov N.S.1, Chechenin N.G.1
-
Afiliações:
- Lomonosov Moscow State University
- Moscow Institute of Physics and Technology
- Edição: Volume 88, Nº 4 (2024)
- Páginas: 627-637
- Seção: Magnetic Phenomena and Smart Composite Materials
- URL: https://edgccjournal.org/0367-6765/article/view/654710
- DOI: https://doi.org/10.31857/S0367676524040158
- EDN: https://elibrary.ru/QHDWXU
- ID: 654710
Citar
Resumo
The possibility of synthesizing nanoparticles by pulsed laser ablation of thin cobalt films in water is shown. The average size of the formed nanoparticles varies in the range of 70–1020 nm depending on the thickness of the ablated film. At film thicknesses less than 35 nm, the size dispersion of the nanoparticles
Sobre autores
I. Dzhun
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Skobeltsyn Institute of Nuclear Physics
Rússia, Moscow, 119991V. Nesterov
Lomonosov Moscow State University; Moscow Institute of Physics and Technology
Autor responsável pela correspondência
Email: nesterovvy@my.msu.ru
Lomonosov Moscow State University, Faculty of Physics
Rússia, Moscow, 119991; Dolgoprudny, 141701D. Shuleiko
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Rússia, Moscow, 119991S. Zabotnov
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Rússia, Moscow, 119991D. Presnov
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Skobeltsyn Institute of Nuclear Physics
Rússia, Moscow, 119991Yu. Alekhina
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Rússia, Moscow, 119991E. Konstantinova
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Rússia, Moscow, 119991N. Perov
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Rússia, Moscow, 119991N. Chechenin
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Skobeltsyn Institute of Nuclear Physics; Faculty of Physics
Rússia, Moscow, 119991Bibliografia
- Lu A.-H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
- Long N.V., Yang Y., Teranishi T. et al. // Mater. Des. 2015. V. 86. P. 797.
- Liu X.Y., Gao Y.Q., Yang G.W. // Nanoscale. 2016. V. 8. P. 4227.
- Alonso-Domínguez D.D., Alvarez-Serrano I.I., Pico M.P. // J. Alloys. Compounds. 2017. V. 695. P. 3239.
- Blakemore J.D., Gray H.B., Winkler J.R., Mueller A.M. // ACS Catalysis. 2013. V. 3. No. 11. P. 2497.
- Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2014. V. 5. Art. No. 9028.
- Kunitsyna E.I., Allayarov R.S., Koplak O.V. et al. // ACS Sensors. 2021. V. 6. No. 12. P. 4315.
- Abdulwahid F.S., Haider A.J., Al-Musawi S. // Nano Rev. 2022. V. 17. No 11. Art. No. 2230007.
- Papis E., Rossi F., M. Raspanti M. et al. // Toxic. Lett. 2009. V. 189. P. 253.
- Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 41302.
- Ichiyanagi Y., Yamada S. // Polyhedron. 2005. V. 24. P. 2813.
- Mehdaoui B., Meffre A., Carrey J. et al. // Adv. Funct. Mat. 2011. V. 21. Art. No. 4573.
- Usov N.A., Gubanova E.M., Wei Z.H. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012044.
- Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П. и др. // ФТТ. 2023. Т. 65. № 7. С. 1100; Melnikov G. Yu, Lepalovskij V.N., Safronov A.P. et al. // Phys. Sol. St. 2023. V. 65. No. 7. P. 1100.
- Sánchez-López E., Gomes D., Esteruelas G. et al. // Nanomaterials. 2020. V. 10. Art. No. 292.
- Bose P., Bid S., Pradhan S.K. et al. // J. Alloys Compounds. 2002. V. 343. P. 192.
- Sun S., Murray C.B. // J. Appl. Phys. 1999. V. 85. P. 4325.
- Mathur S., Veith M., Sivakov V. et al. // Chem. Vap. Depos. 2002. V. 8. P. 277.
- Yin J.S., Wang Z.L. // Nanostruct. Mater. 1999. V. 10. P. 845.
- Becker J.A., Schafer R., Festag J.R. et al. // Surf. Rev. Lett. 1996. V. 3. P. 1121.
- Kurlyandskaya G.V., Portnov D.S, Beketov I.V. et al. // Bioch. Biophys. Acta. 2017. V. 1861. P. 1494.
- Blyakhman F.A., Buznikov N.A., Sklyar T.F. et al. // Sensors. 2018. V. 18. Art. No. 872.
- Li X.G., Chiba A., Takahashi S. et al. // Materials. 1997. V. 173. Art. No. 101.
- Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Advances. 2012. V. 2. Art. No. 022154.
- Курляндская Г.В., Архипов А.В., Бекетов И.В. и др. // ФТТ. 2023. Т. 65. № 6. С. 861; Kurlyandskaya G.V., Arkhipov A.V., Beketov I.V. et al. // Phys. Sol. St. 2023. V. 65. No. 6. P. 861.
- Hansen M.F., Vecchio K.S., Parker F.T. et al. // Appl. Phys. Lett. 2003. V. 82. P. 1574.
- Semaltianos N.G., Karczewski G. // ACS Appl. Nano Mater. 2021. V. 4. P. 6407.
- Amendola V., Riello P., Polizzi S. et al. // J. Mater. Chem. 2011. V. 21. P. 18665.
- Zhang H., Liang C., Liu J. et al. // Carbon. 2013. V. 55. P. 108.
- Franzel L., Bertino M.F., Huba Z.J., Carpenter E.E. // Appl. Surf. Sci. 2012. V. 261. P. 332.
- Amendola V., Scaramuzza S., Carraro F., Cattaruzza E. // J. Colloid Interface Sci. 2017. V. 489. P. 18.
- Zograf G.P., Zuev D.A., Milichko V.A. // J. Phys. Conf. Ser. 2016. V. 741. Art. No. 012119.
- Haustrup N., O’Connor G.M. // J. Nanosci. Nanotechnol. 2012. V. 12. No. 11. P. 8656.
- Bubb D.M., O’Malley S.M., Schoeffling J. et al. // Chem. Phys. Lett. 2013. V. 565. P. 65.
- Scaramuzza S., Zerbetto M., Amendola V. // J. Phys. Chem. C. 2016. V. 120. No. 17. P. 9453.
- Александров В.А. // Междунар. научн. журн. Альтернативная энергетика и экология. 2007. № 11. С. 160.
- Matthias E., Reichling M., Siegel J. // Appl. Phys. A. 1994. V. 58. P. 129.
- Perminov P.A., Dzhun I.O., Ezhov A.A. et al. // Laser Phys. 2011. V. 21. No. 4. P. 801.
- Liang J., Liu W., Li Y. et al. // Appl. Surf. Sci. 2018. V. 456. P. 482.
- Zabotnov S.V., Skobelkina A.V., Kashaev F.V. et al. // Sol. St. Phenom. 2020. V. 312. P. 200.
- Петров Ю.И. Кластеры и малые частицы. Москва: Наука, 1986.
- Santillán J.M.J., van Raap M.B.F., Zelis P.M. et al. // J. Nanopart. Res. 2015. V. 17. No. 2. Art. No. 86.
- Santillán J.M.J., Arboleda D.M., Coral D.F. et al. // ChemPhysChem. 2017. V. 18. No. 9. P. 1192.
- Ghaem E.N., Dorranian D., Sari A.H. // Physica E. 2020. V. 115. Art. No. 113670.
- Hu S., Meltonc C., Mukherjee D. // Phys. Chem. Chem. Phys. 2014. V. 16. Art. No. 24034.
- Zhu H.T., Luo J., Liang J.K. et al. // Physica B. 2008. V. 403. P. 3141.
- Makhlouf S.A. // J. Magn. Magn. Mater. 2002. V. 246. P. 184.
- Ghaem E.N., Dorranian D., Sari A.H. // Opt. Quantum Electron. 2021. V. 53. Art. No. 36.
- Svetlichnyi V.A., Shabalina A.V., Lapin I.N. et al. // Appl. Surf. Sci. 2018. V. 462. P. 226.
- Luna C., del Puerto Morales M., Serna C.J., Vázquez M. // Nanotech. 2003. V. 14. P. 268.
- Dutta P., Seehra M.S., Thota S., Kumar J. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 015218.
- Pal A.K., Chaudhuri S., Barua A.K. // J. Phys. D. Appl. Phys. 1976. V. 9. P. 2261.
- Huang H., Zhigilei L.V. // J. Phys. Chem. C. 2021. V. 125. No. 24. P. 13413.
- Inogamov N.A., Zhakhovsky V.V., Petrov Y.V. et al. // Contrib. Plasma Phys. 2013. V. 53. No. 10. P. 796.
- Zhilan L., Xinghai Ch., Jianxiong W. et al. // Mineral. Mag. 2022. V. 6. No. 2. P. 346.
- Lei Z., Chen X., Wang J. et al. // Mineral. Mag. 2022. V. 86. No. 2. P. 346.
- Wang R.-P., Zhou G.-W. Liu Y.-L. et al. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16827.
- Gao Y., Qin Y., Dong C., Li G. // Appl. Surf. Sci. 2014. V. 311. P. 413.
Arquivos suplementares
