Zitterbewegung damping in structures based on Dirac crystals
- 作者: Kukhar E.I.1, Kryuchkov S.V.1,2, Ivanov N.A.1
-
隶属关系:
- Volgograd State Technical University
- Volgograd State Socio-Pedagogical University
- 期: 卷 88, 编号 2 (2024)
- 页面: 264-268
- 栏目: Wave Phenomena: Physics and Applications
- URL: https://edgccjournal.org/0367-6765/article/view/654761
- DOI: https://doi.org/10.31857/S0367676524020177
- EDN: https://elibrary.ru/RRBTCO
- ID: 654761
如何引用文章
详细
The possibilities of controlling the time of damping of Zitterbewegung oscillations in graphene and graphene superlattice have been investigated. The decay time of Zitterbewegung oscillations in graphene in the presence of high-frequency radiation has been calculated. An increase in the duration of the Zitterbewegung with the inclusion of an alternating field has been explicitly demonstrated. The decay time of the Zitterbewegung for a graphene superlattice has been shown to be controlled by changing the ratio between the period of the superlattice and the width of the electron wave packet.
全文:

作者简介
E. Kukhar
Volgograd State Technical University
编辑信件的主要联系方式.
Email: eikuhar@yandex.ru
俄罗斯联邦, Volgograd
S. Kryuchkov
Volgograd State Technical University; Volgograd State Socio-Pedagogical University
Email: eikuhar@yandex.ru
俄罗斯联邦, Volgograd; Volgograd
N. Ivanov
Volgograd State Technical University
Email: eikuhar@yandex.ru
俄罗斯联邦, Volgograd
参考
- Katsnelson M.I., Novoselov K.S., Geim A.K. // Nature Phys. 2006. V. 2. P. 620.
- Romanovsky I., Yannouleas C., Landman U. // Phys. Rev. B. 2013. V. 87. Art. No. 165431.
- Kim Y., Lee J.D. // Mater. Today Phys. 2021. V. 21. Art. No. 100525.
- Schliemann J., Loss D., Westervelt R.M. // Phys. Rev. Lett. 2005. V. 94. Art. No. 206801.
- Фирсова Н.Е., Ктиторов С.А. // ФТТ. 2021. Т. 63. № 2. С. 277; Firsova N.E., Ktitorov S.A. // Phys. Solid State. 2021. V. 63. No. 2. P. 313.
- Iwasaki Y., Hashimoto Y., Nakamura T. et al. // J. Phys. Conf. Ser. 2017. V. 864. Art. No. 012054.
- Katsnelson M.I. // Europ. Phys. J. B. 2006. V. 51. P. 157.
- Cserti J., Dávid G. // Phys. Rev. B. 2006. V. 74. Art. No. 172305.
- Oriekhov D.O., Gusynin V.P. // Phys. Rev. B. 2022. V. 106. Art. No. 115143.
- Rusin T.M., Zawadzki W. // Phys. Rev. B. 2013. V. 88. Art. No. 235404.
- Reck P., Gorini C., Richter K. // Phys. Rev. B. 2020. V. 101. Art. No. 094306.
- Oka T., Aoki H. // Phys. Rev. B. 2009. V. 79. Art. No. 081406.
- Junk V., Reck P., Gorini C., Richter K. // Phys. Rev. B. 2020. V. 101. Art. No. 134302.
- Reck P., Gorini C., Richter K. // Phys. Rev. B. 2018. V. 98. Art. No. 125421.
- Крючков С.В., Кухарь Е.И. // Опт. и спектроск. 2023. Т. 131. № 2. С. 297.
- Kibis O.V., Morina S., Dini K. et al. // Phys. Rev. B. 2016. V. 93. Art. No. 115420.
- Diago-Cisneros L., Serna E., Vargas I.R. et al. // J. Appl. Phys. 2019. V. 125. Art. No. 203902.
- Garraway B.M., Suominen K.A. // Rep. Prog. Phys. 1995. V. 58. P. 365.
- Huber R., Liu M.–H., Chen S.–C., et al. // Nano Lett. 2020. V. 21. P. 8046.
- Fernandes D.E. // Phys. Rev. B. 2023. V. 107. Art. No. 085119.
- Oubram O., Sadoqi M., Cisneros-Villalobos L. et al. // J. Phys. Cond. Matter. 2023. V. 35. No 26. Art. No. 265301.
- Kamal A., Jellal A. // Physica E. 2021. V. 125. Art. No. 114193.
- Krueckl V., Richter K. // Phys. Rev. B. 2012. V. 85. Art. No. 115433.
补充文件
