Zitterbewegung damping in structures based on Dirac crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibilities of controlling the time of damping of Zitterbewegung oscillations in graphene and graphene superlattice have been investigated. The decay time of Zitterbewegung oscillations in graphene in the presence of high-frequency radiation has been calculated. An increase in the duration of the Zitterbewegung with the inclusion of an alternating field has been explicitly demonstrated. The decay time of the Zitterbewegung for a graphene superlattice has been shown to be controlled by changing the ratio between the period of the superlattice and the width of the electron wave packet.

Texto integral

Acesso é fechado

Sobre autores

E. Kukhar

Volgograd State Technical University

Autor responsável pela correspondência
Email: eikuhar@yandex.ru
Rússia, Volgograd

S. Kryuchkov

Volgograd State Technical University; Volgograd State Socio-Pedagogical University

Email: eikuhar@yandex.ru
Rússia, Volgograd; Volgograd

N. Ivanov

Volgograd State Technical University

Email: eikuhar@yandex.ru
Rússia, Volgograd

Bibliografia

  1. Katsnelson M.I., Novoselov K.S., Geim A.K. // Nature Phys. 2006. V. 2. P. 620.
  2. Romanovsky I., Yannouleas C., Landman U. // Phys. Rev. B. 2013. V. 87. Art. No. 165431.
  3. Kim Y., Lee J.D. // Mater. Today Phys. 2021. V. 21. Art. No. 100525.
  4. Schliemann J., Loss D., Westervelt R.M. // Phys. Rev. Lett. 2005. V. 94. Art. No. 206801.
  5. Фирсова Н.Е., Ктиторов С.А. // ФТТ. 2021. Т. 63. № 2. С. 277; Firsova N.E., Ktitorov S.A. // Phys. Solid State. 2021. V. 63. No. 2. P. 313.
  6. Iwasaki Y., Hashimoto Y., Nakamura T. et al. // J. Phys. Conf. Ser. 2017. V. 864. Art. No. 012054.
  7. Katsnelson M.I. // Europ. Phys. J. B. 2006. V. 51. P. 157.
  8. Cserti J., Dávid G. // Phys. Rev. B. 2006. V. 74. Art. No. 172305.
  9. Oriekhov D.O., Gusynin V.P. // Phys. Rev. B. 2022. V. 106. Art. No. 115143.
  10. Rusin T.M., Zawadzki W. // Phys. Rev. B. 2013. V. 88. Art. No. 235404.
  11. Reck P., Gorini C., Richter K. // Phys. Rev. B. 2020. V. 101. Art. No. 094306.
  12. Oka T., Aoki H. // Phys. Rev. B. 2009. V. 79. Art. No. 081406.
  13. Junk V., Reck P., Gorini C., Richter K. // Phys. Rev. B. 2020. V. 101. Art. No. 134302.
  14. Reck P., Gorini C., Richter K. // Phys. Rev. B. 2018. V. 98. Art. No. 125421.
  15. Крючков С.В., Кухарь Е.И. // Опт. и спектроск. 2023. Т. 131. № 2. С. 297.
  16. Kibis O.V., Morina S., Dini K. et al. // Phys. Rev. B. 2016. V. 93. Art. No. 115420.
  17. Diago-Cisneros L., Serna E., Vargas I.R. et al. // J. Appl. Phys. 2019. V. 125. Art. No. 203902.
  18. Garraway B.M., Suominen K.A. // Rep. Prog. Phys. 1995. V. 58. P. 365.
  19. Huber R., Liu M.–H., Chen S.–C., et al. // Nano Lett. 2020. V. 21. P. 8046.
  20. Fernandes D.E. // Phys. Rev. B. 2023. V. 107. Art. No. 085119.
  21. Oubram O., Sadoqi M., Cisneros-Villalobos L. et al. // J. Phys. Cond. Matter. 2023. V. 35. No 26. Art. No. 265301.
  22. Kamal A., Jellal A. // Physica E. 2021. V. 125. Art. No. 114193.
  23. Krueckl V., Richter K. // Phys. Rev. B. 2012. V. 85. Art. No. 115433.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Electron group velocity in graphene as a function of time in the presence (solid line) and in the absence (dashed line) of RF radiation. 1) E0 = 0.5 kV - m-1; 2) E0 = 1.0 kV - m-1; 3) E0 = 2.0 kV - m-1

Baixar (122KB)
3. Fig. 2. Electron group velocity in the GSR as a function of time for d:b = 1:10 (solid line) and d = b (dashed line). 1) Centre of the mini-zone; 2) ceiling of the mini-zone

Baixar (192KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024