Zitterbewegung damping in structures based on Dirac crystals
- Autores: Kukhar E.I.1, Kryuchkov S.V.1,2, Ivanov N.A.1
-
Afiliações:
- Volgograd State Technical University
- Volgograd State Socio-Pedagogical University
- Edição: Volume 88, Nº 2 (2024)
- Páginas: 264-268
- Seção: Wave Phenomena: Physics and Applications
- URL: https://edgccjournal.org/0367-6765/article/view/654761
- DOI: https://doi.org/10.31857/S0367676524020177
- EDN: https://elibrary.ru/RRBTCO
- ID: 654761
Citar
Resumo
The possibilities of controlling the time of damping of Zitterbewegung oscillations in graphene and graphene superlattice have been investigated. The decay time of Zitterbewegung oscillations in graphene in the presence of high-frequency radiation has been calculated. An increase in the duration of the Zitterbewegung with the inclusion of an alternating field has been explicitly demonstrated. The decay time of the Zitterbewegung for a graphene superlattice has been shown to be controlled by changing the ratio between the period of the superlattice and the width of the electron wave packet.
Texto integral

Sobre autores
E. Kukhar
Volgograd State Technical University
Autor responsável pela correspondência
Email: eikuhar@yandex.ru
Rússia, Volgograd
S. Kryuchkov
Volgograd State Technical University; Volgograd State Socio-Pedagogical University
Email: eikuhar@yandex.ru
Rússia, Volgograd; Volgograd
N. Ivanov
Volgograd State Technical University
Email: eikuhar@yandex.ru
Rússia, Volgograd
Bibliografia
- Katsnelson M.I., Novoselov K.S., Geim A.K. // Nature Phys. 2006. V. 2. P. 620.
- Romanovsky I., Yannouleas C., Landman U. // Phys. Rev. B. 2013. V. 87. Art. No. 165431.
- Kim Y., Lee J.D. // Mater. Today Phys. 2021. V. 21. Art. No. 100525.
- Schliemann J., Loss D., Westervelt R.M. // Phys. Rev. Lett. 2005. V. 94. Art. No. 206801.
- Фирсова Н.Е., Ктиторов С.А. // ФТТ. 2021. Т. 63. № 2. С. 277; Firsova N.E., Ktitorov S.A. // Phys. Solid State. 2021. V. 63. No. 2. P. 313.
- Iwasaki Y., Hashimoto Y., Nakamura T. et al. // J. Phys. Conf. Ser. 2017. V. 864. Art. No. 012054.
- Katsnelson M.I. // Europ. Phys. J. B. 2006. V. 51. P. 157.
- Cserti J., Dávid G. // Phys. Rev. B. 2006. V. 74. Art. No. 172305.
- Oriekhov D.O., Gusynin V.P. // Phys. Rev. B. 2022. V. 106. Art. No. 115143.
- Rusin T.M., Zawadzki W. // Phys. Rev. B. 2013. V. 88. Art. No. 235404.
- Reck P., Gorini C., Richter K. // Phys. Rev. B. 2020. V. 101. Art. No. 094306.
- Oka T., Aoki H. // Phys. Rev. B. 2009. V. 79. Art. No. 081406.
- Junk V., Reck P., Gorini C., Richter K. // Phys. Rev. B. 2020. V. 101. Art. No. 134302.
- Reck P., Gorini C., Richter K. // Phys. Rev. B. 2018. V. 98. Art. No. 125421.
- Крючков С.В., Кухарь Е.И. // Опт. и спектроск. 2023. Т. 131. № 2. С. 297.
- Kibis O.V., Morina S., Dini K. et al. // Phys. Rev. B. 2016. V. 93. Art. No. 115420.
- Diago-Cisneros L., Serna E., Vargas I.R. et al. // J. Appl. Phys. 2019. V. 125. Art. No. 203902.
- Garraway B.M., Suominen K.A. // Rep. Prog. Phys. 1995. V. 58. P. 365.
- Huber R., Liu M.–H., Chen S.–C., et al. // Nano Lett. 2020. V. 21. P. 8046.
- Fernandes D.E. // Phys. Rev. B. 2023. V. 107. Art. No. 085119.
- Oubram O., Sadoqi M., Cisneros-Villalobos L. et al. // J. Phys. Cond. Matter. 2023. V. 35. No 26. Art. No. 265301.
- Kamal A., Jellal A. // Physica E. 2021. V. 125. Art. No. 114193.
- Krueckl V., Richter K. // Phys. Rev. B. 2012. V. 85. Art. No. 115433.
Arquivos suplementares
