On the parametric few-cycle light bullets

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Numerical simulation demonstrates that (2D+1) few-cycle (3–5 oscillations under the envelope) light bullets may form in the medium with quadratic nonlinearity and group velocity anomalous dispersion under conditions of second-harmonic generation. It is shown that as the number of oscillations under the envelope decreases, the parameters of such two-frequency solitons change.

全文:

受限制的访问

作者简介

K. Koshkin

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: koshkin.kv19@physics.msu.ru
俄罗斯联邦, Moscow

S. Sazonov

Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”; Moscow Aviation Institute (National Research University)

Email: koshkin.kv19@physics.msu.ru
俄罗斯联邦, Moscow; Moscow; Moscow

A. Kalinovich

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
俄罗斯联邦, Moscow

M. Komissarova

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
俄罗斯联邦, Moscow

参考

  1. Kanashov A.A., Rubenchik M. // Physica D. 1981. V. 4. No. 1. P. 122.
  2. Skryabin D.V., Firth W.J. // Opt. Commun. 1998. V. 148. P. 79.
  3. Malomed B.A., Drummond P., He H. et al. // Phys. Rev. E. 1997. V. 56. P. 4725.
  4. Liu X., Beckwitt K., Wise F. // Phys. Rev. E. 2000. V. 62. P. 1328.
  5. Liu X., Qian L., Wise F. // Phys. Rev. Lett. 1999. V. 82. No. 2. P. 83.
  6. Sazonov S.V., Mamaikin M.S., Zakharova I.G., Komissarova M.V. // Phys. Wave Phenom. 2017. V. 25. P. 83.
  7. Сазонов С.В. // Опт. и спектроск. 1995. Т. 79. № 2. С. 282.
  8. Сазонов С.В., Комиссарова М.В. // Письма в ЖЭТФ. 2020. Т. 111. № 6. С. 355; Sazonov S.V., Komissarova M.V. // JETP Lett. 2020. V. 111. No. 6. P. 355.
  9. Brabec T., Krausz F. // Rev. Modern Phys. 2000. V. 71. No. 2. P. 545.
  10. Желтиков А.М. Сверхкороткие импульсы и методы нелинейной оптики. М.: Физматлит, 2006.
  11. Архипов Р.М., Архипов М.В., Бабушкин И. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 5. С. 298; Arkhipov R.M., Arkhipov M.V., Babushkin I. et al. // JETP Lett. 2021. V. 114. No. 5. P. 298.
  12. Brabec T., Krausz F. // Phys. Rev. Lett. 1997. V. 78. No. 17. P. 3282.
  13. Маймистов А.И. // Квант. электрон. 2000. Т. 30. № 4. C. 287; Maimistov A.I. // Quantum. Electron. 2000. V. 30. No. 4. P. 287.
  14. Козлов С.А., Сазонов С.В. // ЖЭТФ. 1997. Т. 111. № 2. C. 404; Kozlov S.A., Sazonov S.V. // JETP. 1997. V. 111. No. 2. P. 221.
  15. Маймистов А.И. // Квант. электрон. 2010. Т. 40. № 9. С. 756; Maimistov A.I. // Quant. Electron. 2010. V. 40. No. 9. P. 756.
  16. Розанов Н.Н. // Опт. и спектроск. 2009.Т. 107. № 5. С. 761; Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. No. 5. P. 721.
  17. Komissarova M.V., Sazonov S.V., Kalinovich A.A., Zakharova I.G. // Proc. SPIE. 2019. V. 11026. Art. No. 110260L.
  18. Кившарь Ю.С., Агравал Г.П. Оптические солитоны: от волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005; Kivshar Yu.S., Agrawal G.P. Optical solitons: from fibers to photonic crystals. N. Y.: Academic Press, 2005.
  19. Trofimov V.A., Stepanenko S., Razgulin A. // PLoS ONE. 2019. V. 14. No. 12. Art. No. e0226119.
  20. Nikogosyan D.N. Nonlinear optical crystals: a complete survey. Springer Science+Business Media Inc., 2005.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Spatial profile of the signal (N = 3) at the fundamental frequency for different values ​​of (a). Temporal profile of the signal (N = 3) at the fundamental frequency for different values ​​of (b).

下载 (161KB)
3. Fig. 2. Dependence of the peak intensities of signals at the fundamental frequency on the longitudinal coordinate for different N. Solid line N = 4, dashed line N = 3.2, short dashed line N = 3 (a). Dependence of the peak intensities at the fundamental frequency and at the second harmonic (solid and dashed lines, respectively) on the longitudinal coordinate for N = 3 (b).

下载 (130KB)
4. Fig. 3. Dependence of peak signal intensities at the fundamental frequency and at the second harmonic (solid upper and lower lines, respectively) on the longitudinal coordinate at N = 3. The dotted upper and lower lines are the peak intensities in the case of zero DGS at the second harmonic frequency.

下载 (63KB)
5. Fig. 4. Dependence of the DGS coefficient β1,2 on the wavelength for LiNbO3. Solid and dotted lines are the DGS at the fundamental frequency and the second harmonic, respectively.

下载 (57KB)

版权所有 © Russian Academy of Sciences, 2024