On the parametric few-cycle light bullets

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Numerical simulation demonstrates that (2D+1) few-cycle (3–5 oscillations under the envelope) light bullets may form in the medium with quadratic nonlinearity and group velocity anomalous dispersion under conditions of second-harmonic generation. It is shown that as the number of oscillations under the envelope decreases, the parameters of such two-frequency solitons change.

Palavras-chave

Texto integral

Acesso é fechado

Sobre autores

K. Koshkin

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: koshkin.kv19@physics.msu.ru
Rússia, Moscow

S. Sazonov

Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”; Moscow Aviation Institute (National Research University)

Email: koshkin.kv19@physics.msu.ru
Rússia, Moscow; Moscow; Moscow

A. Kalinovich

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
Rússia, Moscow

M. Komissarova

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
Rússia, Moscow

Bibliografia

  1. Kanashov A.A., Rubenchik M. // Physica D. 1981. V. 4. No. 1. P. 122.
  2. Skryabin D.V., Firth W.J. // Opt. Commun. 1998. V. 148. P. 79.
  3. Malomed B.A., Drummond P., He H. et al. // Phys. Rev. E. 1997. V. 56. P. 4725.
  4. Liu X., Beckwitt K., Wise F. // Phys. Rev. E. 2000. V. 62. P. 1328.
  5. Liu X., Qian L., Wise F. // Phys. Rev. Lett. 1999. V. 82. No. 2. P. 83.
  6. Sazonov S.V., Mamaikin M.S., Zakharova I.G., Komissarova M.V. // Phys. Wave Phenom. 2017. V. 25. P. 83.
  7. Сазонов С.В. // Опт. и спектроск. 1995. Т. 79. № 2. С. 282.
  8. Сазонов С.В., Комиссарова М.В. // Письма в ЖЭТФ. 2020. Т. 111. № 6. С. 355; Sazonov S.V., Komissarova M.V. // JETP Lett. 2020. V. 111. No. 6. P. 355.
  9. Brabec T., Krausz F. // Rev. Modern Phys. 2000. V. 71. No. 2. P. 545.
  10. Желтиков А.М. Сверхкороткие импульсы и методы нелинейной оптики. М.: Физматлит, 2006.
  11. Архипов Р.М., Архипов М.В., Бабушкин И. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 5. С. 298; Arkhipov R.M., Arkhipov M.V., Babushkin I. et al. // JETP Lett. 2021. V. 114. No. 5. P. 298.
  12. Brabec T., Krausz F. // Phys. Rev. Lett. 1997. V. 78. No. 17. P. 3282.
  13. Маймистов А.И. // Квант. электрон. 2000. Т. 30. № 4. C. 287; Maimistov A.I. // Quantum. Electron. 2000. V. 30. No. 4. P. 287.
  14. Козлов С.А., Сазонов С.В. // ЖЭТФ. 1997. Т. 111. № 2. C. 404; Kozlov S.A., Sazonov S.V. // JETP. 1997. V. 111. No. 2. P. 221.
  15. Маймистов А.И. // Квант. электрон. 2010. Т. 40. № 9. С. 756; Maimistov A.I. // Quant. Electron. 2010. V. 40. No. 9. P. 756.
  16. Розанов Н.Н. // Опт. и спектроск. 2009.Т. 107. № 5. С. 761; Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. No. 5. P. 721.
  17. Komissarova M.V., Sazonov S.V., Kalinovich A.A., Zakharova I.G. // Proc. SPIE. 2019. V. 11026. Art. No. 110260L.
  18. Кившарь Ю.С., Агравал Г.П. Оптические солитоны: от волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005; Kivshar Yu.S., Agrawal G.P. Optical solitons: from fibers to photonic crystals. N. Y.: Academic Press, 2005.
  19. Trofimov V.A., Stepanenko S., Razgulin A. // PLoS ONE. 2019. V. 14. No. 12. Art. No. e0226119.
  20. Nikogosyan D.N. Nonlinear optical crystals: a complete survey. Springer Science+Business Media Inc., 2005.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Spatial profile of the signal (N = 3) at the fundamental frequency for different values ​​of (a). Temporal profile of the signal (N = 3) at the fundamental frequency for different values ​​of (b).

Baixar (161KB)
3. Fig. 2. Dependence of the peak intensities of signals at the fundamental frequency on the longitudinal coordinate for different N. Solid line N = 4, dashed line N = 3.2, short dashed line N = 3 (a). Dependence of the peak intensities at the fundamental frequency and at the second harmonic (solid and dashed lines, respectively) on the longitudinal coordinate for N = 3 (b).

Baixar (130KB)
4. Fig. 3. Dependence of peak signal intensities at the fundamental frequency and at the second harmonic (solid upper and lower lines, respectively) on the longitudinal coordinate at N = 3. The dotted upper and lower lines are the peak intensities in the case of zero DGS at the second harmonic frequency.

Baixar (63KB)
5. Fig. 4. Dependence of the DGS coefficient β1,2 on the wavelength for LiNbO3. Solid and dotted lines are the DGS at the fundamental frequency and the second harmonic, respectively.

Baixar (57KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024