Simulation of electron-optical system for 300 GHz relativistic gyrotron

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Calculations were made for a three-electrode magnetron-injector gun with a thermionic cathode for a relativistic gyrotron in the 300 GHz range, which provides the formation of a helical beam with an energy of 250 keV, a current of 100—300 A, and a pitch factor of 1.1. The possibility of generating radiation with a power of more than 8 MW in a gyrotron with a longitudinally slotted cavity has been shown within the framework of three-dimensional PIC-simulations.

全文:

受限制的访问

作者简介

Yu. Danilov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

A. Leontyev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

A. Malkin

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

O. Plankin

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

R. Rozental

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

E. Semenov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

参考

  1. Hu L., Song R., Ma G. et al. // IEEE Trans. Electron Devices. 2018. V. 65. No. 6. P. 2149.
  2. Wang J., Wang G., Wang D. et al. // Sci. Reports. 2018. V. 8. No. 1. P. 1.
  3. Arzhannikov A.V., Sinitsky S.L., Popov S.S. et al. // IEEE Trans. Plasma Sci. 2022. V. 50. No. 8. P. 2348.
  4. Глявин М.Ю., Лучинин А.Г., Богдашов А.А. и др. // Изв. вузов. Радиофизика. 2013. Т. 56. № 8. С. 550.
  5. Mondal D., Yuvaraj S., Rawat M. et al. // IEEE Trans. Electron Devices. 2022. V. 69. No. 3. P. 1442.
  6. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. et al. // IEEE Trans. Electron Devices. 2022. V. 69. No. 3. P. 1451.
  7. Zaitsev N.I., Ginzburg N.S., Ilyakov E.V. et al. // IEEE Trans. Plasma Sci. 2002. V. 30. No. 3. P. 840.
  8. Зайцев Н.И., Завольский Н.А., Запевалов В.Е. и др. // Изв. вузов. Радиофизика. 2003. Т. 46. № 10. С. 914.
  9. Abubakirov E.B., Chirkov A.V., Denisov G.G. et al. // IEEE Trans. Electron Devices. V. 64. No. 4. P. 1865.
  10. Планкин О.П., Семенов Е.С. // Вестн. НГУ. Сер. физ. 2013. Т. 8. № 2. С. 44.
  11. Семенов Е.С., Планкин О.П., Розенталь Р.М. // Изв. вузов “ПНД”. 2015. Т. 23. № 3. С. 94.
  12. Danilov Yu.Yu., Leontyev A.N., Leontyev N.V. et al. // IEEE Trans. Electron Dev. 2021. V. 68. No. 4. P. 2130.
  13. Харвей А.Ф. Техника сверхвысоких частот. Т. 1. М.: Советское радио, 1965. 784 с.
  14. Ваганов Р.Б., Матвеев Р.Ф., Мериакри В.В. Многоволновые волноводы со случайными нерегулярностями. М.: Советское радио, 1972. 232 с.
  15. Tarakanov V.P. // EPJ Web Conf. 2017. V. 149. Art. No. 04024.
  16. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. // J. Infrared Millimeter. Terahertz Waves. 2022. V. 43. No. 8. P. 654.
  17. Rozental R.M., Tarakanov V.P. // J. Infrared Millimeter. Terahertz Waves. 2022. V. 43. No. 6. P. 479.
  18. Власов С.Н., Жислин Г.М., Орлова И.М. и др. // Изв. вузов. Радиофизика. 1969. Т. 12. № 8. С. 1236.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geometry of the electrodes of the original version of the EOS and the map of the distribution of the electric field strength (left), dependences of the electric field strength at different cathode rounding radii for operation with a beam current of 300 A (solid curves) and without a beam current (dashed curves) (right).

下载 (154KB)
3. Fig. 2. Geometry of the optimized version of the EOS and the trajectory of electron movement.

下载 (102KB)
4. Fig. 3. Geometry of the interaction space of a relativistic gyrotron and the instantaneous position of macroparticles in PIC modeling: 1 – helical electron beam, 2 – longitudinal slot resonator, 3 – absorber layer.

下载 (111KB)
5. Fig. 4. Dependence of the energy of macroparticles (smooth line) and pitch factor (horizontal lines) on time (a). Dependence of the output power on time (b). Spectra of the output radiation in the range of 0-100 ns (c) and 100-150 ns (d).

下载 (72KB)

版权所有 © Russian Academy of Sciences, 2024