Structural features and the effect of temperature memory in a vitrivied film of a europium(III) beta-diketonate complex

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Confocal optical microscopy data with a resolution of 1 μm on the spatial heterogeneity of a vitrified film prepared from a melt powder of an anisometric europium(III) beta-diketonate complex are presented. It has been shown that the heterogeneity caused by crystalline inclusions in the amorphous structure of the film, leads to a temperature memory effect, when the film can be in different states at the same temperature.

全文:

受限制的访问

作者简介

D. Lapaev

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»

编辑信件的主要联系方式.
Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

V. Nikiforov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»

Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

D. Zharkov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»

Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan

A. Knyazev

Kazan National Research Technological University

Email: d_lapaev@mail.ru
俄罗斯联邦, Kazan

Yu. Galyametdinov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»; Kazan National Research Technological University

Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

俄罗斯联邦, Kazan; Kazan

参考

  1. Weissman S.I. // J. Chem. Phys. 1942. V. 10. P. 214.
  2. Binnemans K. Handbook on the physics and chemistry of rare earths. V. 35. Amsterdam: Elsevier, 2005. P. 107.
  3. Brito H.F., Malta O.L., Felinto M.C.F.C., Teotonio E.E.S. The chemistry of metal enolates. V. 1. Chap. 3. John Wiley & Sons Ltd., 2009. P. 131.
  4. Hasegawa Y., Kitagawa Y. // J. Mater. Chem. C. 2019. V. 7. P. 7494.
  5. Li R., Xu F.-F., Gong Z.-L., Zhong Y.-W. // Inorg. Chem. Front. 2020. V. 7. P. 3258.
  6. Bussche F.V., Kaczmarek A.M., Speybroeck V.V. et al. // Chem. Eur. J. 2021. V. 27. P. 7214.
  7. Binnemans K. // Chem. Rev. 2009. V. 109. P. 4283.
  8. Quaranta M., Borisov S.M., Klimant I. // Bioanalyt. Rev. 2012. V. 4. P. 115.
  9. Borisov S.M., Fisher R., Saf R., Klimant I. // Adv. Funct. Mater. 2014. V. 24. P. 6548.
  10. Liu H., Lee Y., Park S. et al. // J. Luminescence. 2004. V. 110. P. 11.
  11. Wang Y., Qin W., Zhang J. et al. // Solid State Commun. 2007. V. 142. P. 689.
  12. Kai J., Felinto M.C.F.C., Nunes L.A.O. et al. // J. Mater. Chem. 2011. V. 21. P. 3796.
  13. Ilmi R., Anjum S., Haque A., Khan M.S. // J. Photochem. Photobiol. A. 2019. V. 383. P. 111968.
  14. Mironov L.Y., Evstropiev S.K. // Opt. Engin. 2019. V. 58. P. 027113.
  15. Emelina T., Zadoroznaya A., Kalinovskaya I., Mirochnik A. // Spectrochim. Acta A. 2020. V. 225. P. 117481.
  16. Kataoka H., Kitano T., Takizawa T. et al. // J. Alloys Compounds. 2014. V. 601. P. 293.
  17. Ondrus V., Meier R.J., Klein C. et al. // Sens. Actuators A. 2015. V. 233. P. 434.
  18. Dar W.A., Ganaie A.B., Iftikhar K. // J. Luminescence. 2018. V. 202. P. 438.
  19. Francisco L.H.C., Felinto M.C.F.C., Brito H.F. et al. // J. Mater Sci. Mater Electron. 2019. V. 30. P. 16922.
  20. Lapaev D.V., Nikiforov V.G., Safiullin G.M. et al. // Opt. Mater. 2014. V. 37. P. 593.
  21. Lapaev D.V., Nikiforov V.G., Safiullin G.M. et al. // J. Luminescence. 2016. V. 175. P. 106.
  22. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Opt. Mater. 2018. V. 75. P. 787.
  23. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Mater. Chem. C. 2018. V. 6. P. 9475.
  24. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Опт. и спектроск. 2019. Т. 126. № 1. С. 42, Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Opt. Spectrosc. 2019. V. 126. No. 1. P. 34.
  25. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 12. С. 1635, Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 12. P. 1475.
  26. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Mater. Chem. C. 2020. V. 6. P. 6273.
  27. Galyametdinov Yu.G., Knyazev A.A., Dzhabarov V.I. et al. // Adv. Mater. 2008. V. 20. P. 252.
  28. Knyazev A.A., Krupin A.S., Molostova E.Yu. et al. // Inorg. Chem. 2015. V. 54. P. 8987.
  29. Knyazev A.A., Karyakin M.E., Romanova K.A. et al. // Eur. J. Inorg. Chem. 2017. P. 639.
  30. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Photochem. Photobiol. A. 2019. V. 382. P. 111962.
  31. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Photochem. Photobiol. A. 2022. V. 427. P. 113821.
  32. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Photochem. Photobiol. A. 2023. V. 435. P. 114333.
  33. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1702, Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1444.
  34. Лапаев Д.В., Никифоров В.Г., Сафиуллин Г.М. и др. // Журн. структ. химии 2009. Т. 50. № 4. С. 809, Lapaev D.V., Nikiforov V.G., Safiullin G.M. et al. // J. Struct. Chem. 2009. V. 50. No. 4. P. 775.
  35. De Sá G.F., Malta O.L., de Mello Donegá C. et al. // Coord. Chem. Rev. 2000. V. 196. P. 165.
  36. Binnemans K. // Coord. Chem. Rev. 2015. V. 295. P. 1.
  37. Frey S.T., Horrocks W.D.Jr. // Inorg. Chim. Acta 1995. V. 229. P. 383.
  38. Marques L.F., Santos H.P., D’Oliveira K.A. et al. // Inorg. Chim. Acta 2017. V. 458. P. 28.
  39. Kang J.-S., Jeong Y.-K., Shim Y.S. et al. // J. Luminescence. 2016. V. 178. P. 368.
  40. Seo S.-J., Zhao D., Suh K. et al. // J. Luminescence. 2008. V. 128. P. 565.
  41. Liang H., Chen B., Guo F. et al. // Phys. Stat. Sol. B. 2005. V. 242. P. 1087.
  42. Shahi P.K., Singh A.K., Rai S.B., Ullrich B. // Sens. Actuators A. 2015. V. 222. P. 255.
  43. Zheng Y., Cardinali F., Armaroli N., Accorsi G. // Europ. J. Inorg. Chem. 2008. P. 2075.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural formula of the mesogenic beta-diketonate complex Eu(DK12-14)3phen (a). Photograph of a 20 μm vitrified Eu(DK12-14)3phen film (fixed between two quartz plates measuring 7×15×0.5 mm3) under daylight (b). Transmission spectrum of a 20 μm vitrified Eu(DK12-14)3phen film (c). Micrograph of the surface of the vitrified Eu(DK12-14)3phen film obtained in the crossed polarizers mode at 500-fold magnification (d).

下载 (1023KB)
3. Fig. 2. Energy level diagram for the vitrified Eu(DK12-14)3phen film (a). Solid and dashed arrows indicate radiative and nonradiative transitions, respectively. Luminescence spectrum of the vitrified Eu(DK12-14)3phen film obtained with a 10 μs delay relative to the exciting laser pulse with a wavelength of 337 nm (b).

下载 (368KB)
4. Fig. 3. Normalized kinetics of Eu3+ luminescence at a wavelength of 610.5 nm in a vitrified Eu(DK12-14)3phen film. The solid line is a single-exponential approximation function with a correlation coefficient R2 = 0.99959.

下载 (141KB)
5. Fig. 4. Distribution of luminescence intensity on the surface of the vitrified Eu(DK12-14)3phen film under laser excitation at a wavelength of 405 nm, obtained on a confocal optical microscope (a). Luminescence spectra of the vitrified Eu(DK12-14)3phen film (b), measured in positions 1 and 2 in panel (a).

下载 (696KB)

版权所有 © Russian Academy of Sciences, 2024