On the asymptotic behavior of solutions of third-order binomial differential equations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The paper discusses the development of a method for constructing asymptotic formulas for x+ of a fundamental system of solutions of two-term singular symmetric differential equations of odd order with coefficients from a wide class of functions that allow oscillation (with weakened regularity conditions that do not satisfy the classical Titchmarsh–Levitan regularity conditions). Using the example of a third-order binomial equation (i2)[(p(x)y')''+(p(x)y'')']+q(x)y=λy the asymptotics of solutions in the case of different behavior of the coefficients qx is studied, hx1+1px. New asymptotic formulas are obtained for the case when hxL1.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Ya. Sultanaev

Akmulla Bashkir State Pedagogical University

Хат алмасуға жауапты Автор.
Email: sultanaevyt@gmail.com

Moscow Center of Fundamental and Applied Mathematics

Ресей, Ufa

N. Valeev

Institute of Mathematics with Computing Centre-Subdivision of the Ufa Federal Research Centre of the RAS

Email: valeevnf@yandex.ru
Ресей, Ufa

E. Nazirova

Ufa University of Science and Technology

Email: ellkid@gmail.com
Ресей, Ufa

Әдебиет тізімі

  1. Конечная, Н.Н. Об асимптотике решений двучленных дифференциальных уравнений с сингулярными коэффициентами / Н.Н. Конечная, К.А. Мирзоев, А.А. Шкаликов // Мат. заметки. — 2018. — Т. 104, № 2. — С. 231–242. Konechnaja, N.N. On the asymptotic behavior of solutions to two-term differential equations with singular coefficients / N.N. Konechnaja, K.A. Mirzoev, A.A. Shkalikov // Math. Notes. — 2018. — V. 104, № 2. — P. 244–252.
  2. Мирзоев, К.А. Об асимптотике решений линейных дифференциальных уравнений нечётного порядка / К.А. Мирзоев, Н.Н. Конечная // Вестн. Московского. ун-та. Сер. 1. Математика. Механика. — 2020. — № 1. — С. 23–28. Mirzoev, K.A. Asymptotics of solutions to linear differential equations of odd order / K.A. Mirzoev, N.N. Konechnaja // Moscow Univ. Math. Bull. — 2020. — V. 75, № 1. — P. 22–26.
  3. Султанаев, Я.Т. Об асимптотическом поведении решений дифференциальных уравнений нечётного порядка с осциллирующими коэффициентами / Я.Т. Султанаев, А.Р. Сагитова, Б.И. Марданов // Дифференц. уравнения. — 2022. — Т. 58, № 5. — С. 717–720. Sultanaev, Ya.T. On the asymptotic behavior of solutions of odd-order differential equations with oscillating coefficients / Ya.T. Sultanaev, A.R. Sagitova, B.I. Mardanov // Differ. Equat. — 2022. — V. 58, № 5. — P. 712–715.
  4. Валеев, Н.Ф. Об одном методе исследования асимптотики решений дифференциальных уравнений нечётного порядка с осциллирующими коэффициентами / Н.Ф. Валеев, Э.А. Назирова, Я.Т. Султанаев // Мат. заметки. — 2021. — Т. 109, № 6. — С. 938–943. Valeev, N.F. On a method for studying the asymptotics of solutions of odd-order differential equations with oscillating coefficients / N.F. Valeev, É.A. Nazirova, Ya.T. Sultanaev // Math. Notes. — 2021. — V. 109, № 6. — P. 980–985.
  5. Валеев, Н.Ф. О новом подходе к изучению асимптотического поведения решений сингулярных дифференциальных уравнений / Н.Ф. Валеев, Э.А. Назирова, Я.Т. Султанаев // Уфимский мат. журн. — 2015. — Т. 7, № 3. — С. 9–15. Valeev, N.F. On a new approach for studying asymptotic behavior of solutions to singular differential equations / N.F. Valeev, E.A. Nazirova, Ya.T. Sultanaev // Ufa Math. J. — 2015. — V. 7, № 3. — P. 9–14.
  6. Валеева, Л.Н. Об одном методе исследования асимптотики решений дифференциальных уравнений Штурма–Лиувилля с быстро осциллирующими коэффициентами / Л.Н. Валеева, Э.А. Назирова, Я.Т. Султанаев // Мат. заметки. — 2022. — Т. 112, № 6. — С. 1059–1064. Valeeva, L.N. On a method for studying the asymptotics of solutions of Sturm–Liouville differential equations with rapidly oscillating coefficients / L.N. Valeeva, E.A. Nazirova, Ya.T. Sultanaev // Math. Notes. — 2022. — V. 112, № 6. — P. 1059–1064.
  7. Everitt, W.N. Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators / W.N. Everitt, L. Markus. — Amer. Math. Soc., 1999.
  8. Наймарк, М.А. Линейные дифференциальные операторы / М.А. Наймарк. — М. : Наука, 1969. — 526 с. Naimark, M.A. Linear Differential Operators / M.A.Naimark. — Moscow : Nauka, 1969. — 526 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024