SYNTHESIS, ANTIMICROBIAL ACTIVITY, AND MOLECULAR DOCKING OF N-PHENYLCARBAMATE DERIVATIVES WITH A HETEROCYCLIC MOIETY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

By condensing o-phenylenediamine with 2(4)-aminobenzoic acids in 65% polyphosphoric acid at a temperature of 180–190°C for 4 h or by boiling the reagents in o-xylene in the presence of tetrabutoxytitanium, 2-(2(4)-aminophenyl)benzimidazoles were obtained, the acylation of which with methyl chloroformate in the presence of triethylamine led to the production of the corresponding benzimidazoles with a carbamate function. Condensation of o-phenylenediamine and 4-nitro-o-phenylenediamine with glycolic acid in the presence of 70–75% polyphosphoric acid with heating for four hours at 130°C yielded 2-hydroxymethylbenzimidazole with a yield of 81% and 5-nitro-2-hydroxymethylbenzimidazole with a yield of 84%, which, when treated with phenyl isocyanate in tetrahydrofuran at 27–30°C for 3.5 h, were converted into the corresponding benzimidazole derivatives with a yield of 84–86%. In order to find the most promising ones for further biological research, molecular docking of synthesized 2-substituted benzimidazoles, as well as previously obtained carbamate derivatives of pyridazine and N-allyl derivatives of 2-morpholinoethyl-N-phenylcarbamate and 2-(2-pyridinyl)ethyl-N-phenylcarbamate was carried out based on interaction with the enzyme glucosamine-6-phosphate synthase.

About the authors

A. V. Velikorodov

Tatishchev Astrakhan State University,; Astrakhan State Medical University, Ministry of Health of the Russian Federation,

Email: avelikorodov@mail.ru
Russia, 414000 Astrakhan, pl. Shaumyana, 1; Russia, 414000 Astrakhan, ul. Bakinskaya, 121

S. V. Borisova

Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation,

Russia, 410012 Saratov, ul. Bolshaya Kazachia, 112

E. A. Shustova

Astrakhan State Medical University, Ministry of Health of the Russian Federation,

Russia, 414000 Astrakhan, ul. Bakinskaya, 121

E. N. Kutlalieva

Tatishchev Astrakhan State University,; Astrakhan State Medical University, Ministry of Health of the Russian Federation,

Russia, 414000 Astrakhan, pl. Shaumyana, 1; Russia, 414000 Astrakhan, ul. Bakinskaya, 121

References

  1. Fan J., Fu A., Zhang L. Quantitative Biol. 2019, 7, 83–89. doi: 10.1007/s40484-019-0172-y
  2. Pagadala N. S., Syed K., Tuszynski J. Biophysical Reviews. 2017, 9, 91–102. doi: 10.1007/s12551-016-0247-1
  3. Ajani O. O., Aderohunmu D. V., Ikpo C. O., Adeda- po A. E., Olanrewaju I. O. Arch. Pharm. Chem. Life Sci. 2016. 349, 1–32. doi: 10.1002/ardp.201500464
  4. Shah K., Chhabra S., Shrivastava S.K., Mishra P. Med. Chem. Res. 2013, 22, 5077–5104. doi: 10.1007/s00044-013-0476-9
  5. Shirini F., Mamaghani M., Seddighi M. Res. Chem. Intermed. 2014, 41, 5611–5619. doi: 10.1007/s11164-014-1685-7
  6. Soni L.K., Narsinghani T., Sethi A. Med. Chem. Res. 2012, 21, 4330–4334. doi: 10.1007/s00044-012-9976-2
  7. Veerasamy R., Roy A., Karunakaran R., Rajak H. Pharmaceuticals. 2021, 14, 663. doi: 10.3390/ph14070663
  8. Patil A., Ganguly S., Surana S. Rasayan J. Chem. 2008, 1, 447−460.
  9. Спасов А.А., Яковлев Д.С., Мальцев Д.В., Жуковская А.Н., Анисимова В.А., Ковалев Г.И., Зимин И.А., Марковина Я.В. Биоорг. хим. 2016, 42, 440-447. [Spasov A.A., Yakovlev D.S., Maltsev D.V., Zhukovskaya O.N., Anisimova V.A., Kovalev G.I., Zimin I.A., Morkovina Y. V. Russ. J. Bioorg. Chem. 2016, 42, 397-403.] doi: 10.1134/S1068162016040178
  10. Geeta Y., Swastika G. Eur. J. Med. Chem. 2015, 97, 419−443. doi: 10.1016/j.ejmech.2014.11.053
  11. Menteşe E., Doğan I.S., Kahveci B. ХГС. 2013, 49, 1221-1225. [Menteşe E., Doğan I.S., Kahveci B. Chem. Heterocycl. Compd. 2013, 49, 1136–1140.] doi: 10.1007/s10593-013-1354-6
  12. Chen Q., Zuo X., Liang H., Zhu T., Zhong Y., Liu J., Nan J. CS Appl. Mater. Interfaces. 2020, 12, 637–645. doi: 10.1021/acsami.9b17374
  13. Kneubuhler S., Thull V., Altomare C., Carts V., Gaillard P., Carrupt P.A., Carotti A., Testa B. J. Med. Chem. 1995, 38, 3874–3883. doi: 10.1021/jm00019a018
  14. Kneubuhler S., Carta V., Altomare C., Carottib A., Testaa B. Helv. Chim. Acta. 1993, 76, 1956–1963.
  15. Tucaliuc R.-A., Cotea V.V., Niculaua M., Tuchilus C., Mantu D., Mangalagiu I.I., Eur. J. Med. Chem. 2013, 67, 367–372. doi: 10.1016/j.ejmech.2013.04.069
  16. Asif M., Singh A., Ratnakar L., J. Pharm. Res. 2011, 4, 664–667.
  17. Paneth A., Trotsko N., Popiolek L., Grzegorczyk A., Krzanowski T., Janowska S., Malm A., Wujec M. Chem. Biodiversity. 2019, 16, e1900377. doi: 10.1002/cbdv.201900377
  18. Asadi P., Khodarahmi G., Jahanian-Najafabadi A., Saghaie L., Hassanzadeh F. Chem. Biodiversity. 2017, 14, e1600411. doi: 10.1002/cbdv.201600411
  19. Shiroza T., Ebisawa N., Furihata K., Endō T., Seto H., Ōtake N. Agricult. Biol. Chem. 1982, 46, 1891–1898. doi: 10.1080/00021369.1982.10865330
  20. Zerroug A., Belaidi S., BenBrahim I., Sinha L., Chtita S. J. King Saud Univ. Sci. 2018, 31, 595–601. doi: 10.1016/j.jksus.2018.03.024
  21. McDermott L.A., Iyer P., Vernetti L., Rimer S., Sun J., Boby M., Yang T., Fioravanti M., O’Neill J., Wang L. Bioorg. Med. Chem. 2016, 24, 1819–1839. doi: 10.1016/j.bmc.2016.03.009
  22. Hu Z., Wang C., Han W., Rossi K.A., Bozarth J.M., Wu Y., Sheriff S., Myers J.E., Luettgen J.M., Seiffert D.A. Bioorg. Med. Chem. Lett. 2018, 28, 987–992. doi: 10.1016/j.bmcl.2018.02.049
  23. Nagle P., Pawar Y., Sonawane A., Bhosale S., More D. Med. Chem. Res. 2014, 23, 918–926. doi: 10.1007/s00044-013-0685-2
  24. Kim I., Kang G., Lee K., Park B., Kang D., Jung H., He Y.-T., Baik M.-H., Hong S. J. Am. Chem. Soc. 2019, 141, 9239–9248. doi: 10.1021/jacs.9b02013
  25. Mech P., Bogunia M., Nowacki A., Makowski M. J. Physical Chem. A. 2019, 124, 538–551. doi: 10.1021/acs.jpca.9b10319
  26. Wei X., Yang J., Dai Z., Yu H.-F., Ding C.-F., Khan A., Zhao Y.-L., Liu Y.-P., Luo X.-D., Tetrahedron Lett. 2020, 61, 151502. doi: 10.1016/j.tetlet.2019.151502
  27. Al-Refai M., Ibrahim M.M., Azmi M.N., Osman H., Abu Bakar M.H., Geyer A. Molecules. 2019, 24, 4072–4074. doi: 10.3390/molecules24224072
  28. Marinescu M., Popa C.-V. Int. J. Mol. Sci. 2022, 23, 5659. doi: 10.3390/ijms23105659
  29. Khan E. ChemistrySelect. 2021, 6, 3041-3064. doi: 10.1002/slct.202100332
  30. Kourounakis A.P., Xanthopoulos D., Tzara A. Med. Res. Rev. 2019, 40, 709-752. doi: 10.1002/med.21634
  31. Arshad F., Khan M.F., Akhtar W., Alam M.M., Nainwal L.M., Kaushik S.K., Akhter M., Parvez S., Ha- san S.M., Shaquiquzzaman M. Eur. J. Med. Chem. 2019, 167, 324-356. doi: 10.1016/j.ejmech.2019.02.015
  32. Grimmett M.R. Best synthetic methods. Imidazole and Benzimidazole. Synthesis. San Diego: Academic Press Inc, 1997.
  33. Smith J.G., Ho I. Tetrahedron Lett. 1971, 38, 3541–3544. doi: 10.1016/S0040-4039(01)97226-0
  34. Veeranagaiah V., Rao N.V.S., Ratnam C.V. Proceedings Indian Acad. Sci., Section A. 1974, 79, 230−235.
  35. Tzani M.A., Gabriel C., Lykakis I. Nanomaterials. 2020, 10, 2405. doi: 10.3390/nano10122405
  36. Баевский М.Ю., Маметов Д.Р. Ученые записки Крымского федерального университета им. В.И. Вернадского. Сер. Биол., хим. 2015, 1, 191–196.
  37. Tang P. Org. Synth. 2005, 81, 262–268.
  38. Баевский А.М., Баевский М.Ю., Цикалов В.В., Шелудько А.Б Ученые записки Таврического нац. университета им. В.И. Вернадского. Сер. “Биология, химия”. 2011, 24, 339–346.
  39. Sharghi H., Asemani O., Khalifeh R. Synth. Commun. 2008, 38, 1128-1136. doi: 10.1080/00397910701863657
  40. Rekha A., Hamza A., Venugopal B.R., Nagara J.U. Chin. J. Catal. 2012, 33, 439–446.
  41. Kanaoka Yu., Yonemitsu O., Tanizawaka K., Ban Y. Chem. Pharm. Bull. 1964, 12, 773–778.
  42. Shteinberg. L.Ya., Kondratov S.A., Boiko V.D., Shein S.M. Zh. Org. Khim. 1986, 22, 2466–2467.
  43. Халиков С.С., Архипов И.А., Варламова А.И., Халиков М.С., Чистяченко Ю.С., Душкин А.В. Юг России: экология, развитие. 2016, 11, 178–192.
  44. Zhang C., Xu D., Wang J., Kang C. Russ. J. Gen. Chem. 2017, 87, 3006–3016. doi: 10.1134/S1070363217120465
  45. Великородов А.В., Зухайраева А.С., Чабакова А.К., Ковалев В.Б. ЖОрХ. 2018, 54, 1497-1502. [Velikoro- dov A.V., Zukhairaeva A.S., Chabakova A.K. Russ. J. Org. Chem. 2018, 54, 1509-1514.] doi: 10.1134/S1070428018100123
  46. Великородов А.В., Кутлалиева Э.Н., Золотаре- ва Н.В., Степкина Н.Н., Носачев С.Б., ЖорХ, 2024, 60, 953-961. [Velikorodov A.V., Kutlalieva E.N., Zolotareva N.V., Stepkina N.N., Nosachev S.B. Russ. J. Org. Chem. 2024, 60, 1186-1192.] doi: 10.1134/S1070428024070078
  47. Stefaniak J., Nowak M. G., Wojciechowski M., Milew- ski S., Skwarecki A.S. J. Enzyme Inhib. Med. Chem. 2022, 37, 1928-1956. doi: 10.1080/14756366.2022.2096018
  48. Katariya K.D., Vennapu D.R., Shah S.R. J. Mol. Struct. 2021, 1232, 130036. doi: 10.1016/j.molstruc.2021.130036
  49. Omara A.M., Ihmaid S., Habibd EL-Sayed E., Althagfan S.S., Ahmed S., Abulkhair H.S., Ahmed H.E.A. Bioorg. Chem. 2020, 99, 103781. doi: 10.1016/j.bioorg.2020.103781
  50. Vijesh A.M., Isloor A.M., Telkar S., Arulmoli T., Fun H.-K. Arabian J. Chem. 2013, 6, 197-204. doi: 10.1016/j.arabjc.2011.10.007
  51. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A. J. J. Comput. Chem. 2009, 30, 2785–2791. doi: 10.1002/jcc.21256
  52. Morris G.M., Huey R., Olson A.J. Curr. Protoc. Bioinformatics. 2008, 24, 8-14. doi: 10.1002/0471250953.bi0814s24
  53. ChemOffice (Ultra Version 9.0) – пакет програмных средств CabridgeSoft Corporation, 2005.
  54. Лабинская А.С. Микробиология с техникой микробиологических исследований, М.: Медицина, 1972.
  55. Ayhan-Kılcıgil G., Altanlar N. Il Farmaco. 2003, 58, 1345-1350. doi: 10.1016/s0014-827x(03)00190-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences