Migration of Plutonium, Micro- and Macroelements in the “Soil–Plant” System at Different Soil Moisture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the vegetation experiment, the plutonium, micro- and macroelements migration in the “soil–agricultural plant” system depending on soil moisture in the range from 15 to 40٪ of absolute soil moisture were studied. The content of 239Pu was analyzed by α-spectrometry with preliminary radiochemical isolation. The elemental composition was analyzed by the ICP-MS and ICP-AES methods. Beans (Fabaceae) variety “Amber” were used as a test culture. The plutonium transfer factor obtained in the vegetation experiments are in the range of of 5.3×10–4–1.5×10–2, with an average value of 5.4×10–3 for the aboveground part of bean and range of 4.5×10–2–2.7×10–1, with an average of 1.6×10–1 for bean roots. It was determined that the distribution of plutonium, micro and macro elements in the vegetative organs of plants is not equally, the transfer factor of plutonium for the aboveground part of plants is lower than for the root part. It has been established that the accumulation of plutonium, micro- and macroelements, depending on soil moisture, is different for the organs of beans. The dependence of plutonium accumulation by plants on soil moisture is significantly higher than for other considered elements. A decrease in the coefficient of accumulation of plutonium in the aerial part of the beans is recorded with an increase in soil moisture up to two orders of magnitude. There is a trend towards a slight decrease in the accumulation coefficients of Fe, Mg, Mn, Cr, Mo, Ni, Co, Cu. For the root system of beans, a clear dependence of the accumulation of the considered elements on soil moisture is not observed.

Full Text

Restricted Access

About the authors

M. A. Edomskaya

Russian Institute of Radiology and Agroecology

Author for correspondence.
Email: ma.edomskaya@yandex.ru
ORCID iD: 0000-0002-3905-4087
Russian Federation, Obninsk

S. N. Lukashenko

Russian Institute of Radiology and Agroecology

Email: ma.edomskaya@yandex.ru
ORCID iD: 0000-0002-6146-4613
Russian Federation, Obninsk

A. A. Shupik

Russian Institute of Radiology and Agroecology

Email: ma.edomskaya@yandex.ru
ORCID iD: 0009-0000-4651-9199
Russian Federation, Obninsk

D. A. Zheltov

The Institute of nuclear physics

Email: ma.edomskaya@yandex.ru
ORCID iD: 0000-0002-0138-7484
Kazakhstan, Almaty

P. V. Kharkin

The Institute of nuclear physics

Email: ma.edomskaya@yandex.ru
ORCID iD: 0009-0000-3422-3833
Kazakhstan, Almaty

V. A. Makarova

The Institute of nuclear physics

Email: ma.edomskaya@yandex.ru
ORCID iD: 0000-0003-3615-141X
Kazakhstan, Almaty

References

  1. Актуальные вопросы радиоэкологии Казахстана. Вып. 3. Сб. трудов Института радиационной безопасности и экологии за 2011 г. Под рук. Лукашенко С.Н. Павлодар: Дом печати, 2011;3(2):396. [Topical issues of radioecology in Kazakhstan. Ed. by S.N. Lukashenko. Pavlodar: Dom pechati, 2011;3(2):396. ISBN: 978-601-7112-38-7. (In Russ.)].
  2. Balonov M. et al. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series No. 472. IAEA, 2010.
  3. Barnett C. L., et al. Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA-TECDOC-1616. IAEA, 2009.
  4. Beresford N. A., Howard B.J. Handbook of parameter values for the prediction of radionuclide transfer to wildlife. Technical Reports Series No. 479. IAEA, 2014.
  5. Тяжелые металлы в агроценозах: миграция, действие, нормирование / Под ред. чл.-корр. РАН Н.И. Санжаровой, к.б.н. П.Н. Цыгвинцева. Обнинск: ФГБНУ ВНИИРАЭ, 2019. 398 с. [Heavy metals in agrocenoses: migration, effect, regulation / Ed. by N.I. Sanzharova, P.N. Tsygvintsev. Obninsk: RIRAE, 2019. 398 p. (In Russ.)].
  6. Спиров Р.К. Никитин А.Н., Чешик И.А., Король Р.А. Аккумуляция трансурановых элементов надземными и подземными органами сосудистых растений. Докл. Национальной академии наук Беларуси. 2017;61(2);51–57. [Spirov R.K., Nikitin A.N., Cheshik I.A., Korol R.A. Accumulation of transuranium elements by underground and aboveground organs of tracheophytes. Doklady Natsional’noj Akademii Nauk Belarusi. 2017;61(2):51–57. (In Russ.)].
  7. Тагай С.А. Дударева Н.В., Нилова Е.К. Параметры перехода 241Am, 239+240Pu в сельскохозяйственные культуры. Современные проблемы радиобиологии – 2021: Мат. междунар. научн. конф., Гомель, 23–24 сентября 2021 г. Минск: Информационно-вычислительный центр Министерства финансов Республики Беларусь. 2021. С. 166–169. [Tagay S.A. Dudareva N.V., Nilova E.K. Parameters of the transition of 241Am, 239+240Pu into agricultural crops. Modern problems of radiobiology – 2021: Proceedings of the international scientific conference, Gomel, September 23–24, 2021. Minsk: Information and Computing Center of the Ministry of Finance of the Republic of Belarus, 2021. 166–169. (In Russ.)].
  8. Шуранкова О.А. В.П. Кудряшов. Поступление трансурановых элементов (239+240Pu, 241Am) Чернобыльского происхождения в луговую растительность. Пробл. здоровья и экологии. 2006;1(7):67–71. [Shurankova О.А., Кudrjashov V.P. The transuranium elements (239+240Pu, 241Am) of the chernobyl parentage entering in a meadow plants. Problems of Health and Ecology. 2006;1(7):67–71. (In Russ.)].
  9. Lux D., Kammere, L., Rühm W., Wirth E. Cycling of Pu, Sr, Cs, and other longliving radionuclides in forest ecosystems of the 30-km zone around Chernobyl. Sci. Total Environ. 1995;(173):375–384. https://doi.org/10.1016/0048-9697(95)04741-7
  10. Sokolik, G. A., Ovsiannikova, S. V., Ivanova, T. G., & Leinova, S. L. Soil–plant transfer of plutonium and americium in contaminated regions of Belarus after the Chernobyl catastrophe. Environ. Int. 2004;30(7):939–947. https://doi.org/10.1016/j.envint.2004.03.003
  11. Kozhakhanov T.E., Lukashenko S.N., & Larionova N.V. Accumulation of artificial radionuclides in agricultural plants in the area used for surface nuclear tests. J. Environ. Radioact. 2014;(137):217–226. https://doi.org/10.1016/j.jenvrad.2014.06.026
  12. Larionova N.V., Lukashenko S.N., Kabdyrakova A.M., Kunduzbayeva A.Y., Panitskiy A.V., & Ivanova A.R. Transfer of radionuclides to plants of natural ecosystems at the Semipalatinsk Test Site. J. Environ. Radioact. 2018;(186):63–70. https://doi.org/10.1016/j.jenvrad.2017.09.006
  13. Агрохимия: Учебник для сельскохозяйственных вузов. Под ред. В.М. Клечковского и А.В. Петербургского. 2-е изд., испр. и доп. М.: Колос, 1967. 584 с. [Agrochemistry: A textbook for agricultural. Ed. by V.M. Klechkovsky, A.V. Petersburg. 2nd ed., Corrected. and additional Moscow: Kolos, 1967. 584 p. (In Russ.)].
  14. Edomskaya M.A., Lukashenko S.N., Stupakova G.A. et al. Estimation of radionuclides global fallout levels in the soils of CIS and eastern Europe territory. J. Environ. Radioact. 2022;(247):106865. https://doi.org/10.1016/j.jenvrad.2022.106865
  15. СТ РК ИСО 17294-1-2011 Качество воды. Применение масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС). Ч. 1: Общее руководство. Доступно по: https://online.zakon.kz/Document/?doc_id=31610236&pos=2;-108#pos=2;-108 Ссылка активна 06.12.2022.
  16. СТ РК ИСО 17294-2-2006 Качество воды. Применение масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС). Ч. 2. Доступно по: https://online.zakon.kz/Document/?doc_id=30371803 Ссылка активна 06.12.2022.
  17. ПНД.Ф 16.2.2.2.3.71-2011 Количественный химический анализ почв. Методика выполнения измерений массовых долей металлов в осадках сточных вод, донных отложениях, образцах растительного происхождения спектральными методами. Доступно по: http://gostrf.com/normadata/1/4293793/4293793107.pdf Ссылка активна 06.12.2022.
  18. Физиология растений. В 2 т. Т. 2: Учебник для вузов. В.В. Кузнецов, Г.А. Дмитриева. 4-е изд., перераб. и доп. М.: Изд-во Юрайт, 2021. 459 с. [Plant Physiology. In 2 v. V. 2: Textbook for universities. V.V. Kuznetsov, G.A. Dmitriev. 4th ed., revised. and additional. Moscow: Yurayt Publishing House, 2021. 459 p. (In Russ.)].
  19. Лукашенко С.Н., Эдомская М.А. Плутоний в окружающей среде: источники, механизмы распространения, концентрации. Радиац. биология. Радиоэкология. 2021;61(4):394–424. [Lukashenko S.N., Edomskaya M.A. Plutonium in the environment: sources, dissemination mechanisms, concentrations. Radiation biology. Radioecology. 2021;61(4):394–424. (In Russ.)]. https://doi.org/10.31857/S086980312104007X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example of monitoring moisture consumption of beans grown at 35٪ soil moisture.

Download (150KB)
3. Fig. 2. Average moisture consumption by plants during the growing season.

Download (110KB)
4. Fig. 3. The amount of excess of the transfer factor by the root system in relation to the above-ground part. Кн корни/ Кн надзем. часть

Download (93KB)
5. Fig. 4. Dependence of the transfer factors of plutonium, micro- and macroelements in the “soil–crop plant” system on soil moisture.

Download (377KB)
6. Fig. 5. Variability of the element transfer.

Download (116KB)

Copyright (c) 2024 Russian Academy of Sciences