Radiation dermatitis: the development of the problem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to the clinical assessment, 85–95% of patients undergoing standard radiation therapy develop such a side effect of radiation dermatitis (RD). Currently, the study of the problem of RD moves away from the classification of the main symptoms towards the development of high-tech methods of diagnosis and treatment, which are associated with the use of bioactive substances of different nature, targeted and cellular therapy, and also nanotechnology. However, there is currently no worldwide standard treatment for RD. This review presents a retrospective of the formation and development of this problem, the current state and possible ways of further development of studies.

Full Text

Restricted Access

About the authors

Svetlana S. Sorokina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Author for correspondence.
Email: sorokinasvetlana.iteb@gmail.com
ORCID iD: 0000-0003-4787-4541
Russian Federation, Pushchino

Ekaterina E. Karmanova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: silisti@bk.ru
ORCID iD: 0000-0001-8806-8664
Russian Federation, Pushchino

Viktoriia A. Anikina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: viktoriya.anikina@list.ru
ORCID iD: 0000-0002-5028-2064
Russian Federation, Pushchino

Nelli R. Popova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: nellipopovaran@gmail.com
ORCID iD: 0000-0002-0982-6349
Russian Federation, Pushchino

References

  1. Hellman S., Weichselbaum R.R. Radiation oncology. JAMA. 1996;275(23):1852-1853.
  2. Reddy S., Vijayakumar S. Evaluating clinical skills of radiation oncology residents: parts I and II. Int. J. Cancer. 2000;90(1):1-12. doi: 10.1002/(sici)1097-0215(20000220)90:1<1::aid-ijc1>3.0.co;2-w
  3. Durante M., Loeffler J.S. Charged particles in radiation oncology. Nat. Rev. Clin. Oncol. 2010;7(1):37-43. doi: 10.1038/nrclinonc.2009.183
  4. Vozenin M.C., Bourhis J., Durante M. Towards clinical translation of FLASH radiotherapy. Nat. Rev. Clin. Oncol. 2022;19(12):791-803. doi: 10.1038/s41571-022-00697-z
  5. Maddocks-Jennings W., Wilkinson J.M., Shillington D. Novel approaches to radiotherapy-induced skin reactions: a literature review. Complement Ther. Clin. Pract. 2005;11(4):224-231. doi: 10.1016/j.ctcp.2005.02.001
  6. Salvo N., Barnes E., van Draanen J. et al. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr. Oncol. 2010;17(4):94-112. doi: 10.3747/co.v17i4.493
  7. Ryan J.L., Ling M., Williams J.P. et al. Curcumin intervention and plasma biomarkers for radiation dermatitis in breast cancer patients. J. Invest. Dermatol. 2011;131:S90.
  8. Hille-Betz U., Vaske B., Bremer M. et al. Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy: Risk-modifying factors. Strahlenther Onkol. 2016;192(1):8-16. doi: 10.1007/s00066-015-0899-y
  9. Horgan J.H. Malignancy and dermatitis. Br. Med. J. 1970;4(5726):55. doi: 10.1136/bmj.4.5726.55-b
  10. Leventhal J., Young M.R. Radiation dermatitis: recognition, prevention, and management. Oncology (Williston Park). 2017;31(12):885-899.
  11. Feight D., Baney T., Bruce S., McQuestion M. Putting evidence into practice. Clin. J. Oncol. Nurs. 2011;15(5):481-492. doi: 10.1188/11.CJON.481-492
  12. Siegel R., DeSantis C., Virgo K. et al. Cancer treatment and survivorship statistics, 2012 [published correction appears in CA Cancer J Clin. 2012 Sep-Oct;62(5):348]. CA Cancer J. Clin. 2012;62(4):220-241. doi: 10.3322/caac.21149
  13. Von Essen C.F. Radiation tolerance of the skin. Acta Radiol. Ther. Phys. Biol. 1969;8(4):311-330. doi: 10.3109/02841866909134462
  14. Bourgeois J.F., Gourgou S., Kramar A., Lagarde J.M., Gall Y., Guillot B. Radiation-induced skin fibrosis after treatment of breast cancer: profilometric analysis. Skin. Res. Technol. 2003;9(1):39-42. doi: 10.1034/j.1600-0846.2003.00357.x
  15. Agishev T.T., Topuzov E.E., Krasnozhon D.A. et al. Determination of oxygen perfusion in the area of radiation-induced fibrosis of the skin in patients with breast cancer and its role in pathogenesis of late radiation injury. Exp/ Oncol. 2018;40(3):235-238.
  16. Jaschke W., Schmuth M., Trianni A., Bartal G. Radiation-Induced Skin injuries to patients: what the interventional radiologist needs to know. Cardiovasc. Intervent. Radiol. 2017;40(8):1131-1140. doi: 10.1007/s00270-017-1674-5
  17. Geara F.B., Eid T., Zouain N. et al. Randomized, Prospective, Open-label phase III trial comparing mebo ointment with biafine cream for the management of acute dermatitis during radiotherapy for breast cancer. Am. J. Clin. Oncol. 2018;41(12):1257-1262. doi: 10.1097/COC.0000000000000460
  18. Баюров Л.И. Радиобиология: Учебное пособие. Краснодар: КубГАУ, 2008. 331 с. [Bajurov L.I. Radiobiologija: uchebnoe posobie = Radiobiology: Textbook. Krasnodar: KubGAU, 2008. 331 p. (In Russ.)]
  19. Кижаев Е.В. Хирургическое лечение лучевых язв, подвергшихся малигнизации. Мед. радиология. 1971;16(6):48–52. [Kizhaev E.V. Hirurgicheskoe lechenie luchevyh jazv, podvergshihsja malignizacii = Surgical treatment of radiation ulcers that have undergone malignancy. Med. radiologiya. 1971;16(6):48–52. (In Russ.)]
  20. Лампсаков П.П. Случай канкроида кожи после продолжительного действия рентгеновых лучей. В сб.: Труды первого Всероссийского съезда по борьбе с раковыми заболеваниями. СПб., 1914. С. 135–137. [Lampsakov P.P. Sluchaj kankroida kozhi posle prodolzhitel‘nogo dejstvija rentgenovyh luchej = A case of skin cancroid after prolonged exposure to X-rays. In: Trudy pervogo Vserossijskogo s“ezda po bor‘be s rakovymi zabolevaniyami. SPb., 1914. P. 135–137. (In Russ.)]
  21. ICRP: International recommendations on radiological protection. Revised by the International Commission on Radiological Protection at the Sixth International Congress of Radiology. Br. J. Radiol. 1950; 24:46–53.
  22. Mettler F.A. and Upton A.C. Medical effects of ionizing radiation, 3rd ed. AJNR Am. J. Neuroradiol. 2009;30(2):e30. doi: 10.3174/ajnr.A1289
  23. Goldschmidt H., Sherwin W.K. Reactions to ionizing radiation. J. Am. Acad. Dermatol. 1980;3(6):551-579. doi: 10.1016/s0190-9622(80)80067-3
  24. Kupper T.S., Fuhlbrigge R.C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 2004;4(3):211-222. doi: 10.1038/nri1310
  25. Ratliff C. Impaired skin integrity related to radiation therapy. J. Enterostomal. Ther. 1990;17(5):193-198.
  26. Trott K. and Kummermehr J. Radiation effects in skin. In: Scherer E., Streffer C., Trott K., eds. Radiopathology of organs and tissues. Springer-Verlag., 1991. P. 33–66.
  27. Huda W., Peters K.R. Radiation-induced temporary epilation after a neuroradiologically guided embolization procedure. Radiology. 1994;193(3):642-644. doi: 10.1148/radiology.193.3.7972801
  28. Korinko A., Yurick A. Maintaining skin integrity during radiation therapy. Am. J. Nurs. 1997;97(2):40-44.
  29. Potten C.S. Radiation and skin. Taylor & Francis, 1985. P. 237.
  30. Prasad K.N. Handbook of radiobiology. 2nd ed. Boca Raton, FL: CRC Press, 1995. P. 153–160.
  31. Mendelsohn F.A., Divino C.M., Reis E.D., Kerstein M.D. Wound care after radiation therapy. Adv. Skin Wound. Care. 2002;15(5):216-224. doi: 10.1097/00129334-200209000-00007
  32. Rosenthal L.S., Beck T.J., Williams J. et al. Acute radiation dermatitis following radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia. Pacing Clin. Electrophysiol. 1997;20(7):1834-1839. doi: 10.1111/j.1540-8159.1997.tb03574.x
  33. Panizzon R.G. and Goldschmidt H. Radiation reactions and sequelae. In: Goldschmidt H., Panizzon R.G., eds. Modern dermatologic radiation therapy. New York: Springer-Verlag., 1991. P. 25–36. https://doi.org/10.1007/978-1-4613-9041-1_3
  34. Hopewell J.W. The skin: its structure and response to ionizing radiation. Int J. Radiat. Biol. 1990;57(4):751-773. doi: 10.1080/09553009014550911
  35. Task Group on Radiation Quality Effects in Radiological Protection, Committee 1 on Radiation Effects, International Commission on Radiological Protection. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w(R)). A report of the International Commission on Radiological Protection. Ann. ICRP. 2003;33(4):1-117. doi: 10.1016/s0146-6453(03)00024-1
  36. Koenig T.R., Wolff D., Mettler F.A., Wagner L.K. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am. J. Roentgenol. 2001;177(1):3-11. doi: 10.2214/ajr.177.1.1770003
  37. Peter R.U. Cutaneous radiation syndrome in multi-organ failure. BJR Suppl. 2005;27:180-184.
  38. Balter S., Hopewell J.W., Miller D.L. et al. Fluoroscopically guided interventional procedures: a review of radiation effects on patients‘ skin and hair. Radiology. 2010;254(2):326-341. doi: 10.1148/radiol.2542082312
  39. Turesson I., Notter G. The predictive value of skin telangiectasia for late radiation effects in different normal tissues. Int. J. Radiat. Oncol. Biol. Phys. 1986;12(4):603-609. doi: 10.1016/0360-3016(86)90069-6
  40. International Commission on Radiological Protection. The biological basis for dose limitation in the skin. ICRP Publication 59. Oxford, England: Pergumon. 1992.
  41. Van der Kogel A.J. Radiation response and tolerance of normal tissues. In: Gorden Steel G, editor. Basic clinical radiobiology. 3rd ed., Arnold Publisher, 2002. P. 33–34.
  42. Lichtenstein D.A., Klapholz L., Vardy D.A. et al. Chronic radiodermatitis following cardiac catheterization. Arch. Dermatol. 1996;132(6):663-667.
  43. Søvik E., Kløw N.E., Hellesnes J., Lykke J. Radiation-induced skin injury after percutaneous transluminal coronary angioplasty. Case report. Acta Radiol. 1996;37(3 Pt 1):305-306. doi: 10.1177/02841851960371P164
  44. Peel D.M., Hopewell J.W., Wells J., Charles M.W. Nonstochastic effects of different energy beta emitters on pig skin. Radiat. Res. 1984;99(2):372-382.
  45. Kim J.S., Rhim K.J., Jang W.S. et al. β-irradiation (¹⁶⁶Ho patch)-induced skin injury in mini-pigs: effects on NF-κB and COX-2 expression in the skin. J. Vet. Sci. 2015;16(1):1-9. doi: 10.4142/jvs.2015.16.1.1
  46. Archambeau J.O., Pezner R., Wasserman T. Pathophysiology of irradiated skin and breast. Int. J. Radiat. Oncol. Biol. Phys. 1995;31(5):1171-1185. doi: 10.1016/0360-3016(94)00423-I
  47. Bese N.S., Umay C., Yildirim S. et al. The effects of tamoxifen on radiation-induced pulmonary fibrosis in Wistar albino rats: results of an experimental study. Breast. 2006;15(3):456-460. doi: 10.1016/j.breast.2005.04.016
  48. Koc M. What is the impact of tamoxifen on radiation-induced fibrosis in patients receiving breast-conserving therapy. J. Clin. Oncol. 2007;25(36):5841-5845. doi: 10.1200/JCO.2007.14.6910
  49. Herold D.M., Hanlon A.L., Hanks G.E. Diabetes mellitus: a predictor for late radiation morbidity. Int. J. Radiat. Oncol. Biol. Phys. 1999;43(3):475-479. doi: 10.1016/s0360-3016(98)00460-x
  50. Wagner L.K., McNeese M.D., Marx M.V., Siegel E.L. Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology. 1999;213(3):773-776. doi: 10.1148/radiology.213.3.r99dc16773
  51. Vano E., Goicolea J., Galvan C. et al. Skin radiation injuries in patients following repeated coronary angioplasty procedures. Br. J. Radiol. 2001;74(887):1023-1031. doi: 10.1259/bjr.74.887.741023
  52. Mettler F.A. Jr., Koenig T.R., Wagner L.K., Kelsey CA. Radiation injuries after fluoroscopic procedures. Semin. Ultrasound. CT MR. 2002;23(5):428-442. doi: 10.1016/s0887-2171(02)90014-4
  53. Archambeau J.O. Relative radiation sensitivity of the integumentary system: dose response of the epidermal, microvascular and dermal populations. In: Lett J., Altam K., eds. Advances in radiation biology, 1987. V. 12. San Diego: Academic press. P. 147–203.
  54. Denham J.W., Hauer-Jensen M. The radiotherapeutic injury- a complex ‚wound‘. Radiother. Oncol. 2002;63(2):129-145. doi: 10.1016/s0167-8140(02)00060-9
  55. Dutreix J. Human skin: early and late reactions in relation to dose and its time distribution. Br. J. Radiol. Suppl. 1986;19:22-28.
  56. McCullough M.L. Sclerosing dermatoses. In: Farmer E.R., Hood AF, eds. Pathology of the skin, 2nd ed. New York: McGraw-Hill, 1999: 441–445. doi.org/10.2214/ajr.177..1.1770003
  57. Merrick A., Errington F., Milward K. et al. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br. J. Cancer. 2005;92(8):1450-1458. doi: 10.1038/sj.bjc.6602518
  58. Nikulin A.A. and Krylova E.A. Comparative evaluation of the treatment of radiation skin injuries with oxycort ointment and Peruvian balsam. Farmakol. Toksikol. 1980;43:97–100.
  59. Merad M., Manz M.G., Karsunky H. et al. Langerhans cells renew in the skin throughout life under steady-state conditions [published correction appears in Nat. Immunol. 2003 Jan;4(1):92]. Nat. Immunol. 2002;3(12):1135-1141. doi: 10.1038/ni852
  60. Takashima A., Bergstresser P.R. Cytokine-mediated communication by keratinocytes and Langerhans cells with dendritic epidermal T cells. Semin. Immunol. 1996;8(6):333-339. doi: 10.1006/smim.1996.0044
  61. Gottlöber P., Krähn G., Peter R.U. Das kutane Strahlensyndrom. Klinik, Diagnostik und Therapie [Cutaneous radiation syndrome: clinical features, diagnosis and therapy]. Hautarzt. 2000;51(8):567-574. doi: 10.1007/s001050051173
  62. Müller K., Meineke V. Radiation-induced alterations in cytokine production by skin cells. Exp. Hematol. 2007;35(4 Suppl 1):96-104. doi: 10.1016/j.exphem.2007.01.017
  63. Kalesnikoff J., Galli S.J. New developments in mast cell biology. Nat. Immunol. 2008;9(11):1215-1223. doi: 10.1038/ni.f.216
  64. Tripp C.S., Blomme E.A., Chinn K.S. et al. Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. J. Invest. Dermatol. 2003;121(4):853-861. doi: 10.1046/j.1523-1747.2003.12495.x
  65. Yeoh A.S., Bowen J.M., Gibson R.J., Keefe D.M. Nuclear factor kappaB (NFkappaB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes. Int. J. Radiat. Oncol. Biol. Phys. 2005;63(5):1295-1303. doi: 10.1016/j.ijrobp.2005.04.041
  66. McQuestion M. Evidence-based skin care management in radiation therapy. Semin. Oncol. Nurs. 2006;22(3):163-173. doi: 10.1016/j.soncn.2006.04.004
  67. Hopewell J.W. Mechanisms of the action of radiation on skin and underlying tissues. Br. J. Radiol. Suppl. 1986;19:39-47.
  68. LeBoit P.E. Subacute radiation dermatitis: a histologic imitator of acute cutaneous graft-versus-host disease. J. Am. Acad. Dermatol. 1989;20(2 Pt 1):236-241. doi: 10.1016/s0190-9622(89)70028-1
  69. Boncher J., Bergfeld W.F. Fluoroscopy-induced chronic radiation dermatitis: a report of two additional cases and a brief review of the literature. J. Cutan. Pathol. 2012;39(1):63-67. doi: 10.1111/j.1600-0560.2011.01754.x
  70. D‘incan M., Roger H., Gabrillargues J. et al. Alopécie transitoire d‘origine radique après embolisation artérielle cérébrale: 6 cas [Radiation-induced temporary hair loss after endovascular embolization of the cerebral arteries: six cases]. Ann. Dermatol. Venereol. 2002;129(5 Pt 1):703-706.
  71. Stone M.S., Robson K.J., LeBoit P.E. Subacute radiation dermatitis from fluoroscopy during coronary artery stenting: evidence for cytotoxic lymphocyte mediated apoptosis. J. Am. Acad. Dermatol. 1998;38(2 Pt 2):333-336. doi: 10.1016/s0190-9622(98)70577-8
  72. Lee J., Hoss D., Phillips T.J. Fluoroscopy-induced skin necrosis. Arch. Dermatol. 2003;139(2):140-142. doi: 10.1001/archderm.139.2.140
  73. Dandurand M., Huet P., Guillot B. Radiodermites secondaires aux explorations endovasculaires: 5 observations [Secondary radiodermatitis caused by endovascular explorations: 5 cases]. Ann. Dermatol. Venereol. 1999;126(5):413-417.
  74. Frazier T.H., Richardson J.B., Fabré V.C., Callen J.P. Fluoroscopy-induced chronic radiation skin injury: a disease perhaps often overlooked. Arch. Dermatol. 2007;143(5):637-640. doi: 10.1001/archderm.143.5.637
  75. Jeskowiak A., Hubmer M., Prenner G., Maechler H. Radiation induced cutaneous ulcer on the back in a patient with congenital anomaly of the upper cava system. Interact Cardiovasc. Thorac. Surg. 2011;12(2):290-292. doi: 10.1510/icvts.2010.247395
  76. Malkinson F.D., Keane J.T. Radiobiology of the skin: review of some effects on epidermis and hair. J. Invest. Dermatol. 1981;77(1):133-138. doi: 10.1111/1523-1747.ep12479347
  77. Steinert M., Weiss M., Gottlöber P. et al. Delayed effects of accidental cutaneous radiation exposure: fifteen years of follow-up after the Chernobyl accident. J. Am. Acad. Dermatol. 2003;49(3):417-423. doi: 10.1067/s0190-9622(03)02088-7
  78. Elias P.M., Feingold K.R. Does the tail wag the dog? Role of the barrier in the pathogenesis of inflammatory dermatoses and therapeutic implications. Arch. Dermatol. 2001;137(8):1079-1081.
  79. Borzuchowska A. Doświadczalna salmoneloza w warunkach napromieniowania [Experimental Salmonella infection under the effect of ionizing radiation]. Rocz. Akad. Med. Im. Juliana Marchlewskiego Bialymst. 1979(24). P. 5-52
  80. Altoparlak U., Koca O., Koca T. Incidence and risk factors of the secondary skin infections in patients with radiodermatitis. Eurasian J. Med. 2011;43(3):177-181. doi: 10.5152/eajm.2011.34
  81. ФКР ФМБА России. Диагностика, лечение местных лучевых поражений и их отдаленных последствий. Федеральные клинические рекомендации. М., 2015. 62 с. [FKR FMBA Rossii. Diagnostika, lechenie mestnyh luchevyh porazhenij i ih otdaljonnyh posledstvij = Diagnosis, treatment of local radiation injuries and their longterm consequences. Federal’nye klinicheskie rekomendacii. M., 2015. 62s. (In Russ.)]
  82. Clairand I., Trompier F., Bottollier-Depois J.F., Gourmelon P. EX vivo ESR measurements associated with Monte Carlo calculations for accident dosimetry: application to the 2001 Georgian accident. Radiat. Prot. Dosim. 2006;119(1-4):500-505. doi: 10.1093/rpd/nci516
  83. Trompier F., Sadlo J., Michalik J. et al. EPR dosimetry for actual and suspected overexposures during radiotherapy treatments in Poland. Radiat. Meas. 2007;42:1025–1028. doi: 10.1016/j.radmeas.2007.05.005
  84. Jones I.M., Tucker J.D., Langlois R.G. et al. Evaluation of three somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident. Radiat. Prot. Dosim. 2001;97(1):61-67. doi: 10.1093/oxfordjournals.rpd.a006639
  85. Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic. Acid. Res. Mol. Biol. 1988;35:95-125. doi: 10.1016/s0079-6603(08)60611-x
  86. Belli M., Sapora O., Tabocchini M.A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat. Res. 2002;43 Suppl:S13-S19. doi: 10.1269/jrr.43.s13
  87. Harper J.L., Franklin L.E., Jenrette J.M., Aguero E.G. Skin toxicity during breast irradiation: pathophysiology and management. South. Med. J. 2004;97(10):989-993. doi: 10.1097/01.SMJ.0000140866.97278.87
  88. Shack R.B., Lynch J.B. Radiation dermatitis. Clin. Plast. Surg. 1987;14(2):391-401.
  89. Schmuth M., Wimmer M.A., Hofer S. et al. Topical corticosteroid therapy for acute radiation dermatitis: a prospective, randomized, double-blind study. Br. J. Dermatol. 2002;146(6):983-991. https://doi: 10.1046/j.1365-2133.2002.04751.x
  90. Shukla P.N., Gairola M., Mohanti B.K., Rath G.K. Prophylactic beclomethasone spray to the skin during postoperative radiotherapy of carcinoma breast: a prospective randomized study. Indian. J. Cancer. 2006;43(4):180-184. https://doi: 10.4103/0019-509x.29424
  91. Williams M.S., Burk M., Loprinzi C.L. et al. Phase III double-blind evaluation of an aloe vera gel as a prophylactic agent for radiation-induced skin toxicity. Int. J. Radiat. Oncol. Biol. Phys. 1996;36(2):345-349. https://doi: 10.1016/s0360-3016(96)00320-3
  92. Liguori V., Guillemin C., Pesce G.F. et al. Double-blind, randomized clinical study comparing hyaluronic acid cream to placebo in patients treated with radiotherapy. Radiother. Oncol. 1997;42(2):155-161. https://doi: 10.1016/s0167-8140(96)01882-8
  93. Graham P., Browne L., Capp A. et al. Randomized, paired comparison of No-Sting Barrier Film versus sorbolene cream (10% glycerine) skin care during postmastectomy irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2004;58(1):241-246. https://doi: 10.1016/s0360-3016(03)01431-7
  94. Maddocks-Jennings W., Wilkinson J.M., Shillington D. Novel approaches to radiotherapy-induced skin reactions: a literature review. Complement Ther. Clin .Pract. 2005;11(4):224-231. doi: 10.1016/j.ctcp.2005.02.001
  95. Wells M., Macmillan M., Raab G. et al. Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother. Oncol. 2004;73(2):153-162. doi: 10.1016/j.radonc.2004.07.032
  96. Kao J.S., Fluhr J.W., Man M.Q. et al. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Invest .Dermatol. 2003;120(3):456-464. doi: 10.1046/j.1523-1747.2003.12053.x
  97. Choi E.H., Brown B.E., Crumrine D. et al. Mechanisms by which psychologic stress alters cutaneous permeability barrier homeostasis and stratum corneum integrity. J. Invest Dermatol. 2005;124(3):587-595. https://doi: 10.1111/j.0022-202X.2005.23589.x
  98. Röper B., Kaisig D., Auer F., Mergen E., Molls M. Thêta-Cream versus Bepanthol lotion in breast cancer patients under radiotherapy. A new prophylactic agent in skin care? Strahlenther. Onkol. 2004;180(5):315-322. https://doi: 10.1007/s00066-004-1174-9
  99. Chiao T.B., Lee A.J. Role of pentoxifylline and vitamin E in attenuation of radiation-induced fibrosis. Ann. Pharmacother. 2005;39(3):516-522. doi: 10.1345/aph.1E186
  100. Dirier A., Akmansu M., Bora H., Gurer M. The effect of vitamin E on acute skin reaction caused by radiotherapy. Clin. Exp. Dermatol. 2007;32(5):571-573. https://doi: 10.1111/j.1365-2230.2007.02452.x
  101. Delanian S., Balla-Mekias S., Lefaix J.L. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J. Clin. Oncol. 1999;17(10):3283-3290. https://doi: 10.1200/JCO.1999.17.10.3283
  102. Manzanas García A., López Carrizosa M.C., Vallejo Ocaña C. et al. Superoxidase dismutase (SOD) topical use in oncologic patients: treatment of acute cutaneous toxicity secondary to radiotherapy. Clin. Transl. Oncol. 2008;10(3):163-167. doi: 10.1007/s12094-008-0174-0
  103. Doctrow S.R., Huffman K., Marcus C.B. et al. Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol. 1997;38:247-269. https://doi: 10.1016/s1054-3589(08)60987-4
  104. Young C.N., Koepke J.I., Terlecky L.J. et al. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease [published correction appears in J Invest Dermatol. 2009 Jul;129(7):1838. Boyd, Savoy L [corrected to Boyd Savoy, L]]. J. Invest. Dermatol. 2008;128(11):2606-2614. https://doi: 10.1038/jid.2008.122
  105. Rosenthal R.A., Fish B., Hill R.P. et al. Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med. Chem. 2011;11(4):359-372. https://doi: 10.2174/187152011795677490
  106. Dunst J., Semlin S., Pigorsch S. et al. Intermittent use of amifostine during postoperative radiochemotherapy and acute toxicity in rectal cancer patients. Strahlenther. Onkol. 2000;176(9):416-421. https://doi: 10.1007/pl00002350
  107. Okunieff P., Xu J., Hu D. et al. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int. J. Radiat. Oncol. Biol. Phys. 2006;65(3):890-898. https://doi: 10.1016/j.ijrobp.2006.03.025
  108. Dale P.S., Tamhankar C.P., George D., Daftary G.V. Co-medication with hydrolytic enzymes in radiation therapy of uterine cervix: evidence of the reduction of acute side effects. Cancer Chemother. Pharmacol. 2001;47 Suppl:S29-S34. https://doi: 10.1007/s002800170006
  109. Gujral M.S., Patnaik P.M., Kaul R. et al. Efficacy of hydrolytic enzymes in preventing radiation therapy-induced side effects in patients with head and neck cancers. Cancer Chemother. Pharmacol. 2001;47. Suppl:S23-S28. https://doi: 10.1007/s002800170005
  110. Ryan J.L. Ionizing radiation: the good, the bad, and the ugly. J Invest. Dermatol. 2012;132(3 Pt 2):985-993. doi: 10.1038/jid.2011.411
  111. Müller K., Meineke V. Radiation-induced mast cell mediators differentially modulate chemokine release from dermal fibroblasts. J. Dermatol. Sci. 2011;61(3):199-205. https://doi: 10.1016/j.jdermsci.2011.01.003
  112. Morgan K. Radiotherapy-induced skin reactions: prevention and cure. Br. J. Nurs. 2014;23(16):S24-S32. doi: 10.12968/bjon.2014.23.Sup16.S24
  113. Chan R.J., Larsen E., Chan P. Re-examining the evidence in radiation dermatitis management literature: an overview and a critical appraisal of systematic reviews. Int. J. Radiat. Oncol. Biol. Phys. 2012;84(3):e357-e362. https://doi: 10.1016/j.ijrobp.2012.05.009
  114. Chan R.J., Webster J., Chung B. et al. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2014;14:53. https://doi: 10.1186/1471-2407-14-53
  115. Hindley A., Zain Z., Wood L. et al. Mometasone furoate cream reduces acute radiation dermatitis in patients receiving breast radiation therapy: results of a randomized trial [published correction appears in Int J Radiat Oncol Biol Phys. 2015 Mar 15;91(4):882. doi: 10.1016/j.ijrobp.2014.11.001]. Int. J. Radiat. Oncol. Biol. Phys. 2014;90(4):748-755. https://doi: 10.1016/j.ijrobp.2014.06.033
  116. De Langhe S., Mulliez T., Veldeman L. et al. Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy. BMC Cancer. 2014;14:711. https://doi: 10.1186/1471-2407-14-711
  117. Radvansky L.J., Pace M.B., Siddiqui A. Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia. Am. J. Health Syst. Pharm. 2013;70(12):1025-1032. https://doi: 10.2146/ajhp120467
  118. Waghmare C.M. Radiation burn--from mechanism to management. Burns. 2013;39(2):212-219. https://doi: 10.1016/j.burns.2012.09.012
  119. Wei K.C., Yang K.C., Mar G.Y. et al. STROBEb – Radiation Ulcer: An Overlooked Complication of Fluoroscopic Intervention: A Cross-Sectional Study. Medicine (Baltimore). 2015;94(48):e2178. https://doi: 10.1097/MD.0000000000002178
  120. Hamada N., Fujimichi Y. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. J. Radiat. Res. 2014;55(4):629-640. https://doi: 10.1093/jrr/rru019
  121. National Center for Environmental Health (NCEH). Agency for Toxic Substances and Disease Registry (ATSDR) NCfIPaCN. Cutaneous radiation injury. Fact sheet for physicians. 2005.
  122. Singh M., Alavi A., Wong R., Akita S. Radiodermatitis: A Review of Our Current Understanding. Am. J. Clin. Dermatol. 2016;17(3):277-292. https://doi: 10.1007/s40257-016-0186-4
  123. Bey E., Prat M., Duhamel P. et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound, Repair. Regen. 2010;18(1):50-58. https://doi: 10.1111/j.1524-475X.2009.00562.x
  124. Wolbarst A.B., Wiley A.L. Jr., Nemhauser J.B. et al. Medical response to a major radiologic emergency: a primer for medical and public health practitioners. Radiology. 2010;254(3):660-677. doi: 10.1148/radiol.09090330
  125. Brown K.R., Rzucidlo E. Acute and chronic radiation injury [published correction appears in J. Vasc. Surg. 2012 Feb;55(2):627]. J. Vasc. Surg. 2011;53(1 Suppl):15S-21S. doi: 10.1016/j.jvs.2010.06.175
  126. Vano-Galvan S., Fernandez-Lizarbe E., Truchuelo M. et al. Dynamic skin changes of acute radiation dermatitis revealed by in vivo reflectance confocal microscopy. J. Eur. Acad. Dermatol. Venereol. 2013;27(9):1143-1150. doi: 10.1111/j.1468-3083.2012.04680.x
  127. Glover D., Harmer V. Radiotherapy-induced skin reactions: assessment and management. Br. J. Nurs. 2014;23(4):S28-S35. doi: 10.12968/bjon.2014.23.Sup2.S28
  128. Hu S.C., Hou M.F., Luo K.H. et al. Changes in biophysical properties of the skin following radiotherapy for breast cancer. J. Dermatol. 2014;41(12):1087-1094. doi: 10.1111/1346-8138.12669
  129. Zhang S., Wang W., Gu Q. et al. Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radic. Biol. Med. 2014;69:96-107. https://doi: 10.1016/j.freeradbiomed.2014.01.019
  130. Perez-Aso M., Mediero A., Low Y.C. et al. Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J. 2016;30(1):457-465. https://doi: 10.1096/fj.15-280388
  131. Yu D., Li S., Wang S. et al. Development and characterization of VEGF165-Chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar. Drugs. 2016;14(10):182. https://doi: 10.3390/md14100182
  132. Wang Z., Chen Z., Jiang Z. et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat. Commun. 2019;10(1):2538. https://doi: 10.1038/s41467-019-10386-8
  133. Valinciute G., Weigel C., Veldwijk M.R. et al. BET-bromodomain inhibitors modulate epigenetic patterns at the diacylglycerol kinase alpha enhancer associated with radiation-induced fibrosis. Radiother. O. 2017;125(1):168-174. https://doi: 10.1016/j.radonc.2017.08.028ncol
  134. Kim J.H., Kolozsvary A.J., Jenrow K.A., Brown S.L. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat .Biol. 2013;89(5):311-318. doi: 10.3109/09553002.2013.765055
  135. Kim J.M., Yoo H., Kim J.Y. et al. Metformin Alleviates Radiation-Induced Skin Fibrosis via the Downregulation of FOXO3. Cell. Physiol Biochem. 2018;48(3):959-970. https://doi: 10.1159/000491964
  136. Amber K.T., Shiman M.I., Badiavas E.V. The use of antioxidants in radiotherapy-induced skin toxicity. Integr. Cancer Ther. 2014;13(1):38-45. https://doi: 10.1177/1534735413490235
  137. Kumar R., Griffin M, Adigbli G. et al. Lipotransfer for radiation-induced skin fibrosis. Br. J. Surg. 2016;103(8):950-961. https://doi: 10.1002/bjs.10180
  138. Qiu Y., Gao Y., Yu D. et al. Genome-wide analysis reveals zinc Transporter ZIP9 regulated by DNA methylation promotes radiation-induced skin fibrosis via the TGF-β signaling pathway. J. Invest. Dermatol. 2020;140(1):94-102.e7. doi: 10.1016/j.jid.2019.04.027
  139. Rajadhyaksha M., González S., Zavislan J.M. et al. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J. Invest. Dermatol. 1999;113(3):293-303. doi: 10.1046/j.1523-1747.1999.00690.x
  140. Pellacani G., Guitera P., Longo C. et al. The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J. Invest. Dermatol. 2007;127(12):2759-2765. doi: 10.1038/sj.jid.5700993
  141. Guitera P., Pellacani G., Longo C. et al. In vivo reflectance confocal microscopy enhances secondary evaluation of melanocytic lesions. J. Invest.Dermatol. 2009;129(1):131-138. doi: 10.1038/jid.2008.193
  142. Smesny S., Riemann S., Riehemann S. et al. Quantitative messung induzierter Hautrötungen durch optische reflexionsspektroskopie-methodik und klinische anwendung [Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application]. Biomed. Tech. (Berl). 2001;46(10):280-286. doi: 10.1515/bmte.2001.46.10.280
  143. Yohan D., Kim A., Korpela E. et al. Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy. Biomed. Opt. Express. 2014;5(5):1309-1320. doi: 10.1364/BOE.5.001309
  144. Amelink A., van der Ploeg, van den Heuvel A., de Wolf W.J. et al. Monitoring PDT by means of superficial reflectance spectroscopy. J. Photochem. Photobiol. B. 2005;79(3):243-251. doi: 10.1016/j.jphotobiol.2005.01.006
  145. Evers D.J., Hendriks B., Lucassen G., Ruers T. Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy. Future Oncol. 2012;8(3):307-320. doi: 10.2217/fon.12.15
  146. Kushner J. 4th, Kim D., So P.T. et al. Dual-channel two-photon microscopy study of transdermal transport in skin treated with low-frequency ultrasound and a chemical enhancer. J. Invest. Dermatol. 2007;127(12):2832-2846. https://doi: 10.1038/sj.jid.5700908
  147. Kabashima K., Egawa G. Intravital multiphoton imaging of cutaneous immune responses J. Invest. Dermatol. 2014;134(11):2680-2684. https://doi: 10.1038/jid.2014.225
  148. Paoli J., Smedh M., Wennberg A.M., Ericson M.B. Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J. Invest. Dermatol. 2008;128(5):1248-1255. https://doi: 10.1038/sj.jid.5701139
  149. Dimitrow E., Ziemer M., Koehler M.J. et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol. 2009;129(7):1752-1758. doi: 10.1038/jid.2008.439
  150. Jang W.H., Shim S., Wang T. et al. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy. Sci. Rep. 2016;6:19216. https://doi: 10.1038/srep19216
  151. MASCC 2013 Abstracts. Support Care Cancer. 2013; 21(Suppl 1):1–301.
  152. Shin S., Jang B.H., Suh H.S. et al. Effectiveness, safety, and economic evaluation of topical application of a herbal ointment, Jaungo, for radiation dermatitis after breast conserving surgery in patients with breast cancer (GREEN study): Study protocol for a randomized controlled trial. Medicine (Baltimore). 2019;98(15):e15174. https://doi: 10.1097/MD.0000000000015174
  153. Diggelmann K.V., Zytkovicz A.E., Tuaine J.M. et al. Mepilex Lite dressings for the management of radiation-induced erythema: a systematic inpatient controlled clinical trial. Br. J. Radiol. 2010;83(995):971-978. https://doi: 10.1259/bjr/62011713
  154. Anscher M.S. Targeting the TGF-beta1 pathway to prevent normal tissue injury after cancer therapy. Oncologist. 2010;15(4):350-359. https://doi: 10.1634/theoncologist.2009-S101
  155. Lee J.W., Tutela J.P., Zoumalan R.A. et al. Inhibition of Smad3 expression in radiation-induced fibrosis using a novel method for topical transcutaneous gene therapy. Arch. Otolaryngol. Head. Neck. Surg. 2010;136(7):714-719. https://doi: 10.1001/archoto.2010.107
  156. Cummings R.J., Mitra S., Foster T.H., Lord E.M. Migration of skin dendritic cells in response to ionizing radiation exposure. Radiat. Res. 2009;171(6):687-697. https://doi: 10.1667/RR1600.1
  157. Burdelya L.G., Krivokrysenko V.I., Tallant T.C. et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320(5873):226-230. https://doi: 10.1126/science.1154986
  158. Gudkov A.V., Komarova E.A. Radioprotection: smart games with death. J. Clin. Invest. 2010;120(7):2270-2273. https://doi: 10.1172/JCI43794
  159. Lee J., Jang H., Park S. et al. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J. Transl Med. 2019;17(1):295. doi: 10.1186/s12967-019-2044-7
  160. Miller E.D, Song F., Smith J.D. et al. Plasma-based biomaterials for the treatment of cutaneous radiation injury. Wound. Repair. Regen. 2019;27(2):139-149. https://doi: 10.1111/wrr.12691
  161. Gerber S.A., Cummings R.J., Judge J.L. et al. Interleukin-12 preserves the cutaneous physical and immunological barrier after radiation exposure. Radiat. Res. 2015;183(1):72-81. doi: 10.1667/RR13802.1
  162. Kurow O., Frey B., Schuster L. et al. Full Length Interleukin 33 Aggravates Radiation-Induced Skin Reaction. Front. Immunol. 2017;8:722. https://doi: 10.3389/fimmu.2017.00722
  163. Gu Q., Feng T., Cao H. et al. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiat. Oncol. 2013;8:253. https://doi: 10.1186/1748-717X-8-253
  164. Yücel S., Şahin B., Güral Z. et al. Impact of Superoxide Dismutase-Gliadin on Radiation-induced Fibrosis: An Experimental Study. In Vivo. 2016;30(4):451-456.
  165. Doctrow S.R., Lopez A., Schock A.M. et al. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin [published correction appears in J Invest Dermatol. 2013 Jun;133(6):1691]. J. Invest. Dermatol. 2013;133(4):1088-1096. https://doi: 10.1038/jid.2012.410
  166. Otterson M.F., Nie L., Schmidt J.L. et al. EUK-207 protects human intestinal microvascular endothelial cells (HIMEC) against irradiation-induced apoptosis through the Bcl2 pathway. Life Sci. 2012;91(15-16):771-782. https://doi: 10.1016/j.lfs.2012.08.018.
  167. Raber J., Davis M.J., Pfankuch T. et al. Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav. Brain. Res. 2017;320:457-463. https://doi: 10.1016/j.bbr.2016.10.038
  168. Jeong M.H., Park Y.S., Jeong D.H. et al. In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. Int. J. Mol. Med. 2014;34(5):1349-1357. https://doi: 10.3892/ijmm.2014.1901
  169. Watanabe S., Fujita M., Ishihara M. et al. Protective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats. J. Radiat. Res. 2014;55(6):1107-1113. https://doi: 10.1093/jrr/rru067
  170. Borab Z., Mirmanesh M.D., Gantz M. et al. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. J. Plast. Reconstr. Aesthet. Surg. 2017;70(4):529-538. https://doi: 10.1016/j.bjps.2016.11.024
  171. Rácz E., Prens E.P. Phototherapy of psoriasis, a chronic inflammatory skin disease. Adv. Exp. Med. Biol. 2017;996:287-294. https://doi: 10.1007/978-3-319-56017-5_24
  172. Ortiz-Salvador J.M., Pérez-Ferriols A. Phototherapy in atopic dermatitis. Adv. Exp. Med. Biol. 2017;996:279-286. https://doi: 10.1007/978-3-319-56017-5_23
  173. Patrizi A., Raone B., Ravaioli G.M. Safety and efficacy of phototherapy in the management of eczema. Adv. Exp. Med. Biol. 2017;996:319-331. https://doi: 10.1007/978-3-319-56017-5_27
  174. Zhang P., Wu M.X. A clinical review of phototherapy for psoriasis. Lasers Med. Sci. 2018;33(1):173-180. doi: 10.1007/s10103-017-2360-1
  175. Kim W.S., Park B.S., Sung J.H. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin. Biol. Ther. 2009;9(7):879-887. https://doi: 10.1517/14712590903039684
  176. Akita S., Yoshimoto H., Ohtsuru A. et al. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries. Radiat. Prot. Dosim. 2012;151(4):656-660. https://doi: 10.1093/rpd/ncs176
  177. Akita S. Treatment of Radiation Injury. Adv. Wound Care (New Rochelle). 2014;3(1):1-11. doi: 10.1089/wound.2012.0403
  178. Xiao Y., Mo W., Jia H. et al. Ionizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. J. Dermatol. Sci. 2020;97(2):152-160. https://doi: 10.1016/j.jdermsci.2020.01.009
  179. Zhang Y., Zhang S., Shao X. Topical agent therapy for prevention and treatment of radiodermatitis: a meta-analysis. Support Care Cancer. 2013;21(4):1025-1031. https://doi: 10.1007/s00520-012-1622-5
  180. Zhang X., Li H., Li Q. et al. Application of red light phototherapy in the treatment of radioactive dermatitis in patients with head and neck cancer. World J. Surg. Oncol. 2018;16(1):222. https://doi: 10.1186/s12957-018-1522-3
  181. Liao X., Xie G.H., Liu H.W. et al. Helium-neon laser irradiation promotes the proliferation and migration of human epidermal stem cells in vitro: proposed mechanism for enhanced wound re-epithelialization. Photomed. Laser Surg. 2014;32(4):219-225. https://doi: 10.1089/pho.2013.3667
  182. Kara N., Selamet H., Benkli Y.A et al. Laser therapy induces increased viability and proliferation in isolated fibroblast cells. Wounds. 2020;32(3):69-73.
  183. Sousa R.G., Batista Kde N. Laser therapy in wound healing associated with diabetes mellitus Review. An. Bras. Dermatol. 2016;91(4):489-493. https://doi: 10.1590/abd1806-4841.20163778
  184. Eissa M., Salih W.H.M. The influence of low-intensity He-Ne laser on the wound healing in diabetic rats. Lasers Med. Sci. 2017;32(6):1261-1267. https://doi: 10.1007/s10103-017-2230-x
  185. Popov A.L., Shcherbakov A.B., Zholobak N.M. et al. Cerium dioxide nanoparticles as third-generation enzymes (Nanozymes). Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):760–781.
  186. Zal Z., Ghasemi A., Azizi S. et al. Radioprotective effect of cerium oxide nanoparticles against genotoxicity induced by ionizing radiation on human lymphocytes. Curr. Radiopharm. 2018;11(2):109-115. https://doi: 10.2174/1874471011666180528095203
  187. Xu P.T., Maidment B.W. 3rd., Antonic V. et al. Cerium oxide nanoparticles: A potential medical countermeasure to mitigate radiation-induced lung injury in CBA/J Mice. Radiat. Res. 2016;185(5):516-526. doi: 10.1667/RR14261.1
  188. Popova N.R., Shekunova T.O., Popov A.L. et al. Cerium oxide nanoparticles provide radioprotective effects upon X-ray irradiation by modulation of gene expression. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(5):564–572.
  189. Wason M.S., Lu H., Yu L. et al. Cerium oxide nanoparticles sensitize pancreatic cancer to radiation therapy through oxidative activation of the JNK apoptotic pathway. Cancers (Basel). 2018;10(9):303. https://doi: 10.3390/cancers10090303
  190. Popova N.R., Andreeva V.V., Khohlov N.V. et al. Fabrication of CeO2 nanoparticles embedded in polysaccharide hydrogel and their application in skin wound healing. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):99–109.
  191. Popov A.L., Khohlov N.V., Popova N.R. et al. Composite cerium oxide nanoparticles - containing polysaccharide hydrogel as effective agent for burn wound healing. KEM. 2021;899:493–505.
  192. Moradi A., Kheirollahkhani Y., Fatahi P. et al. An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med. Sci. 2019;34(4):779-791. https://doi: 10.1007/s10103-018-2664-9
  193. Talakesh T., Tabatabaee N., Atoof F. et al. Effect of nano-curcumin on radiotherapy-induced skin reaction in breast cancer patients: A randomized, triple-blind, placebo-controlled trial. Curr. Radiopharm. 2022;15(4):332-340. https://doi: 10.2174/1874471015666220623104316
  194. Schmidt F.M.Q., González C.V.S., Mattar R.C. et al. Topical cream containing nanoparticles with vitamin E to prevent radiodermatitis in women with breast cancer: a clinical trial protocol. J. Wound. Care. 2020;29(LatAm sup 1):18-26. https://doi: 10.12968/jowc.2020.29.LatAm_sup_1.18.eng
  195. Tavakoli S. Klar A.S. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169. https://doi: 10.3390/biom10081169
  196. Pignol J.P., Olivotto I., Rakovitch E. et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J. Clin. Oncol. 2008;26(13):2085-2092. https://doi: 10.1200/JCO.2007.15.2488
  197. Freedman G.M., Li T., Nicolaou N. et al. Breast intensity-modulated radiation therapy reduces time spent with acute dermatitis for women of all breast sizes during radiation. Int. J. Radiat. Oncol. Biol. Phys. 2009;74(3):689-694. https://doi: 10.1016/j.ijrobp.2008.08.071
  198. Zlobinskaya O., Girst S., Greubel C. et al. Reduced side effects by proton microchannel radiotherapy: study in a human skin model. Radiat. Environ. Biophys. 2013;52(1):123-133. https://doi: 10.1007/s00411-012-0450-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences