Dynamics of 137Cs aggregated transfer factors to animal fodder: 35 years after the Chernobyl accident

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of the analysis of 137Cs aggregated transfer factors (Tag) change in the forages of agricultural animals (hay, haylage, silage and green forage) in the south-western districts of the Bryansk region during 35 years after the Chernobyl accident are presented. It is shown that the rates of Tag reduction in different districts and zones of radioactive contamination differed significantly, and the dynamics of their change had an uneven character. Four time’ intervals are distinguished for assessments, from 1987 to 1992, from 1993 to 2006, from 2006, and from 2006 to 2015 and from 2016 to 2021. The first period covered the time after the accident, when the countermeasures were carried out on a maximum scale, the second one when the scales of remediation decreased significantly, the third period was a time (from 2006 to 2016), when the dynamics of the Tag reduction was influenced by the Federal Target Program (FTP) “Preservation and restoration of soil fertility of agricultural lands and agricultural landscapes as national patrimony of Russia for 2006–2013” and the fourth one was from 2016 to 2021, a remote period after the accident, when the volumes of rehabilitation of agricultural lands were very low. The half-lives, calculated for the period of intensive countermeasure implementation, ranged from 0.73 to 2.0 years. During the next period the 137Cs decrease in all types of forage crops strongly slowed down, and in many areas, there was a tendency for an increase in the Tag values. During the third and fourth periods the dynamics was of multidirectional character, namely, in the districts where the FTP activities were applied in a full scale an essential increase in the 137Cs Tag values to fodder plants was noted, and where the countermeasures application was limited a further increase in this parameter was noted. The efficiency of remediation was estimated by the criterion of reduction of Tag values (reduction factor) in zones with different 137Cs deposition density on agricultural lands. It was also noted that the reduction factor at different time intervals after the accident ranged from 1.1 (silage) to 5.1 (haylage). The highest efficiency in Tag reduction in fodder crops was observed both in the first period after the accident (1986–1992) and in the period of the FTP implementation. It was shown that the Tag reduction factors in the zone with deposition density from 185 to 555 kBq/m2 were not significantly different from those in the zone with deposition density of 555–1480 kBq/m2.

Full Text

Restricted Access

About the authors

Sergey V. Fesenko

NRC “Kurchatov Institute” — Russian Research Institute of Radiology and Agroecology

Author for correspondence.
Email: Corwin_17F@mail.ru
ORCID iD: 0000-0003-1238-3689
Russian Federation, Obninsk

Pyotr V. Prudnikov

Bryaynsk Center of Chemistry and Agricultural Radiology

Email: agrohim32@mail.ru
Russian Federation, Bryansk

Nizametdin N. Isamov

NRC “Kurchatov Institute” — Russian Research Institute of Radiology and Agroecology

Email: nizomis@yandex.ru
ORCID iD: 0000-0001-5799-4964
Russian Federation, Obninsk

Evgeniya S. Emlyutina

NRC “Kurchatov Institute” — Russian Research Institute of Radiology and Agroecology

Email: janefesenko@gmail.com
ORCID iD: 0000-0002-8660-8679
Russian Federation, Obninsk

Igor E. Titov

NRC “Kurchatov Institute” — Russian Research Institute of Radiology and Agroecology

Email: titan13_08@mail.ru
ORCID iD: 0000-0002-5275-3229
Russian Federation, Obninsk

Olga A. Shubina

NRC “Kurchatov Institute” — Russian Research Institute of Radiology and Agroecology

Email: olgashu76@gmail.com
ORCID iD: 0000-0003-3055-9473
Russian Federation, Obninsk

References

  1. Alexakhin R.M., Fesenko S.V., Sanzharova N.I. Serious radiation accidents and the radiological impact on agriculture. Radiat. Prot. Dosim. 1996;64:37–42.
  2. Алексахин Р.М., Крышев И.И., Фесенко С.В. и др. Радиоэкологические проблемы ядерной энергетики. Атомная энергия. 1990;68(5):320—327. [Alexsakhin R.M., Kryshev I.I., Fesenko S.V. et al. Radioecological problems of nuclear energy. Nuclear energy. 1990;68(5):320—327. (In Russ.)]
  3. Радиоэкологические последствия аварии на Чернобыльской АЭС: биологические эффекты, миграция, реабилитация загрязненных территорий: Монография. Под ред. Санжаровой Н.И. и Фесенко С.В. М.: РАН, 2018. 278 с. [Radioekologicheskie posledstviya avarii na Chernobyl’skoj AES: biologicheskie effekty, migraciya, reabilitaciya zagryaznennyh territorij: Monografiya. Pod red. N.I. Sanzharovoj i S.V. Fesenko. M. RAN, 2018. 278 p. (In Russ.)]
  4. Fesenko S.V., Jacob P., Alexakhin R. et al. Important factors governing exposure of the population and countermeasure application in rural settlements of the Russian Federation in the long term after the Chernobyl accident. J. Environ. Radioact. 2001;56:77–98.
  5. Панов А.В., Фесенко С.В., Санжарова Н.И. и др. Влияние сельскохозяйственных контрмер на облучение населения территорий, пострадавших от аварии на Чернобыльской АЭС. Радиация и риск. 2006;46(2):273–279. [Panov A.V., Fesenko S.V., Sanzharova N.I. et al. Impact of Agricultural Countermeasures on the Exposure of the Population of the Areas Affected by the Chernobyl Accident. Radiation and Risk. 2006;46(2):273–279 (In Russ.)]
  6. Alexakhin R.M., Sanzharova N.I., Fesenko S.V. et al. Chernobyl radionuclide distribution, migration, and environmental and agricultural impacts. Health Phys. 2007;93(5):418–426.
  7. Fesenko S.V., Alexakhin R.M., Balonov M.I. et.al. Twenty years’ application of agricultural countermeasures following the Chernobyl accident: lessons learned. J. Radiat. Prot. 2006. v. 26, p. 351— 359.
  8. Маркина З.Н., Курганов А.А., Воробьев Г.Т. Радиоактивное загрязнение продукции растениеводства Брянской области. Брянск: Брянский Центр «Агрохимрадиология», 1997. 241 c. [Markina Z.N., Kurganov A.A., Vorob’ev G.T. Radioaktivnoe zagrjaznenie produkcii rastenievodstva Brjanskoj oblasti. Brjansk: Brjanskij Centr «Agrohimradiologija», 1997. 241 p. (In Russ.)]
  9. Прудников П.В. Использование агрономических руд и новых комплексных минеральных удобрений на радиоактивно загрязненных почвах. Брянск: Брянский Центр «Агрохимрадиология». 2012. 212 с. [Prudnikov P.V. Ispol’zovanie agronomicheskih rud i novyh kompleksnyh mineral’nyh udobrenij na radioaktivno zagrjaznennyh pochvah. Brjansk: Brjanskij Centr «Agrohimradiologija», 2012. 212 p. (In Russ.)]
  10. Fesenko S.V., Alexakhin R.M., Sanzharova N.I., Spiridonov S.I. Dynamics of C 137 s concentration in agricultural products in areas of Russia contaminated as a result of the accident at the Chernobyl nuclear power plant. Radiat. Prot. Dosim. 1995;60(2):155–166.
  11. Fesenko S.V., Colgan P.A., Sanzharova N.I. et al. The dynamics of the transfer of caesium–137 to animal fodder is areas of Russia affected by the Chernobyl accident and resulting doses from the consumption of milk and milk products. Radiat. Prot. Dosim. 1997;69 (4):289–299.
  12. Фесенко С.В., Санжарова Н.И., Лисянский К.Б., Алексахин P.M. Динамика снижения коэффициентов перехода C 137 s в сельскохозяйственные растения после аварии на Чернобыльской АЭС. Радиац. биология. Радиоэкология. 1998;38(2):256–273. [Fesenko S.V., Sanzharova N.I., Lisyansky K.B., Alexakhin P.M. Dynamics of reduction of C 137 s transfer factors to agricultural plants after the Chernobyl accident. Radiation Biology. Radioecology. 1998;38(2):256–273. (In Russ.)]
  13. Fesenko S., Sanzharova N., Vidal M. et al. Radioecological definitions, soil, plant classifications and reference ecological data for radiological assessments. In: Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA–TECDOC–1616. Vienna: IAEA. 2009, 7–26.
  14. Фесенко С.В., Прудников П.В., Емлютина Е.С. и др. Динамика содержания C 137 s в сельскохозяйственной продукции после аварии на ЧАЭС: зерно, картофель и овощи. Радиац. гигиена. 2022;15(4):81–93. [Fesenko SV, Prudnikov P.V., Emljutina E.S., Epifanova I.Je., Shubina O.A. Dynamics of C 137 s concentrations in agricultural products after the Chernobyl accident: cereals, potato, and vegetables. Radiation Hygiene. 2022;15(4):81–93. (In Russ.)]
  15. Фесенко С.В., Прудников П.В., Исамов Н.Н. и др. Динамика снижения содержания C 137 s в кормовых культурах в отдаленный период после аварии на Чернобыльской АЭС. Радиац. биология. Радиоэкология. 2022;62(2) 185–195. [Fesenko S.V., Prudnikov P.V., Isamov N.N. et al. Dynamics of C 137 s Concentration in Fodders in the Long–Term after the Chernobyl Accident. Radiation Biology. Radioecology. 2022; 62(2):185–195. (In Russ.)]
  16. Финогенов А.А., Ткачев В.А., Локшин А.М. и др. Российский Национальный Доклад: 35 лет чернобыльской аварии. Итоги и перспективы преодоления ее последствий в России. 1986–2021. М.: ИБРАЭ, 2021. 116 с. [Finogenov A.A., Tkachev V.A., Lokshin A.M., Asmolov V.G., Verpeta V.I., Kuzmin S.V. et al. Russian National Report: 35 years of the Chernobyl accident. results and prospects of overcoming its consequences in Russia. 1986–2021. M.: IBRAE, 2021. 116 p. (In Russ.).]
  17. Гераськин С.А., Фесенко С.В., Черняева Л.Г., Санжарова Н.И. Статистические методы анализа эмпирических распределений коэффициентов накопления радионуклидов растениями. Сельскохоз. биология. 1991;1:130–137. [Geras’kin S.A., Fesenko S.V., Chernyaeva L.G., Sanzharova N.I. Statisticheskie metody analiza jempiricheskih raspredelenij kojefficientov nakoplenija radionuklidov rastenijami. Sel’skohozjajstvennaya biologiya. 1991;1:130–137. (In Russ.)]
  18. Воробьев Г.Т. Почвы Брянской области. Брянск: Грани, 1993. 160 с. [Vorob’ev G.T. Pochvy Brjanskoj oblasti. Brjansk: Grani, 1993. 160 p. (In Russ.)]
  19. Временные рекомендации по ведению агропромышленного производства в Белорусской ССР на территории, подвергшейся радиоактивному загрязнению. Государственный агропромышленный комитет СССР. М.: Всесоюзный научно-исследовательский институт сельскохозяйственной радиологии (ВНИИСХР), 1986. 241 c. [Vremennye rekomendacii po vedeniju agropromyshlennogo proizvodstva v Belorusskoj SSR na territorii, podvergshejsja radioaktivnomu zagrjazneniju. Moskva: VNIISHR, 1986. 41 p. (In Russ.)]
  20. Рекомендации по ведению сельского хозяйства в условиях радиоактивного загрязнения территории в результате аварии на Чернобыльской АЭС на период 1991–1995 гг. Обнинск: ВНИИСХР, 1991. 39 c. [Rekomendacii po vedeniju sel’skogo hozjajstva v uslovijah radioaktivnogo zagrjaznenija territorii v rezul’tate avarii na Chernobyl’skoj AJeS na period 1991–1995. Obninsk: VNIISHR, 1991. 39 p. (In Russ.)]
  21. Руководство по ведению сельскохозяйственного производства на радиоактивно загрязненных территориях Республики Беларусь и Российской Федерации. М.: МинЧС Российской Федерации, 2005. 40 c. [Rukovodstvo po vedeniju sel’skohozjajstvennogo proizvodstva na radioaktivno zagrjaznjonnyh territorijah Respubliki Belarus’ i Rossijskoj Federacii. Minsk-Moskva: MinChS Rossijskoj Federacii, 2005. 40 p. (In Russ.)]
  22. Pröhl G., Ehlken S., Fiedler I. et al. Ecological half-lives of S 90 r and C 137 s in terrestrial and aquatic ecosystems. J. Environ. Radioact. 2006;91(1–2):41–72.
  23. Mück K. Long-term effective decrease of cesium concentration in foodstuffs after nuclear fallout. Health Phys. 1997;72(5):659–673.
  24. Tagami K., Tsukada H., Uchida S., Howard B.J. Changes in the soil to brown rice concentration ratio of radiocaesium before and after the Fukushima Daiichi nuclear power plant accident in 2011. Environ. Sci. Techn. 2018;52:8339.
  25. Tagami K., Uchida S. Effective half-lives of C 137 s in giant butterbur and field horsetail, and the distribution differences of potassium and C 137 s in aboveground tissue parts. J. Environ. Radioact. 2015;141:138–145.
  26. Tagami K., Hashimoto S., Kusakabe M. Pre- and post-accident environmental transfer of radionuclides in Japan: lessons learned in the IAEA MODARIA II programme J. Radiol. Prot. 2022(42)020509.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Implementation of radical improvement at the meadows and pastures used for feedstuffs production [3, 8]. Percentage of cultivated areas of the total area of lands.

Download (145KB)
3. Fig. 2. Quantity of feedstuffs samples taken annually in southwestern districts of Bryansk region in 1986–2021.

Download (128KB)
4. Fig. 3. Dynamics of 137Cs aggregated transfer factor values to fodder of Novozybkovsky district, Bryansk region. a – hay, b – silage, c – green fodder.

Download (323KB)
5. Fig. 4. Dynamics of 137Cs aggregated transfer factor values to fodder during 35 years after the Chernobyl accident. The solid lines represent the Tag values recommended for the relevant time period after the accident.

Download (411KB)
6. Fig. 5. Dynamics of 137Cs aggregated transfer factor values to fodder in the zone with contamination density less than 185 kBq/m2. a – Tag to hay and haylage, b – Tag to silage and green fodder.

Download (209KB)
7. Fig. 6. Dynamics of Tag 137Cs to animal feeds as a result of countermeasure application. The solid lines show the average Tag reduction over 35 years. a – hay, b – haylage, c – silage, г – green fodder.

Download (328KB)

Copyright (c) 2024 Russian Academy of Sciences