Augmented cortisol and antiglucocorticoid therapy in mood disorders: the hippocampus as a potential drug target
- Authors: Gulyaeva N.V.1,2
-
Affiliations:
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
- Moscow Research and Clinical Center for Neuropsychiatry
- Issue: Vol 110, No 7 (2024)
- Pages: 1108–1127
- Section: REVIEW
- URL: https://edgccjournal.org/0869-8139/article/view/651614
- DOI: https://doi.org/10.31857/S0869813924070045
- EDN: https://elibrary.ru/BDWHDS
- ID: 651614
Cite item
Abstract
The pathophysiology of many mood disorders is closely related to abnormal stress response associated with the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and cortisol overproduction. The hippocampus, a key structure of the limbic system responsible for both cognitive and emotional spheres, is selectively vulnerable to excess of glucocorticoids (GCs) inducing neuroinflammation and neurodegeneration. The antiGC therapy of psychiatric diseases, in particular depressive disorders, may be a useful additional treatment. Among other approaches, targeting glucocorticoid receptors, abounded in the hippocampus, is regarded as highly promising. However, though the preclinical data provide fairly firm evidence to the concept of antiGC therapy for stress-related diseases, clinical studies still are at the proof-of-concept stage. Noteworthy, chronic GC excess is associated not only with mood diseases, but also with cognitive decline, metabolic disorders, diabetes. Potentially, antiGC (HPA axis modifying) therapy may alleviate affective symptoms, cognitive disturbances, GC and insulin resistance and adverse side effects of conventional drugs through beneficial effects on the hippocampus mitigating its dysfunction and neurodegeneration, neuroinflammation, and impairment of neurogenesis. Since stress/GC-associated neuroinflammation-mediated pathology of the limbic system and, specifically, the hippocampus, is a general feature typical for many brain diseases, the concept of antiGC therapy may be extended, tested and validated in a wider spectrum of cerebral pathologies.
Full Text

About the authors
N. V. Gulyaeva
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences; Moscow Research and Clinical Center for Neuropsychiatry
Author for correspondence.
Email: nata_gul@ihna.ru
Russian Federation, Moscow; Moscow
References
- McEwen BS, Akil H (2020) Revisiting the Stress Concept: Implications for Affective Disorders. J Neurosci 40: 12–21. https://doi.org/10.1523/JNEUROSCI.0733–19.2019
- Dhikav V, Anand KS (2007) Is hippocampal atrophy a future drug target? Med Hypotheses 68: 1300–1306. https://doi.org/10.1016/j.mehy.2006.09.0402
- Gulyaeva NV (2019) Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage. Neurochem Res 44: 1306–1322. https://doi.org/10.1007/s11064–018–2662–0
- Gulyaeva NV (2019) Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. Biochemistry (Mosc) 84: 1306–1328. https://doi.org/10.1134/S0006297919110087
- Uchoa ET, Aguilera G, Herman JP, Fiedler JL, Deak T, de Sousa MBC (2014) Novel aspects of glucocorticoid actions. J Neuroendocrinol 26: 557–-572. https://doi.org/10.1111/jne.12157
- de Kloet ER, Joëls M (2023) The cortisol switch between vulnerability and resilience. Mol Psychiatry 29 (1): 20–34. https://doi.org/10.1038/s41380–022–01934–8
- Gulyaeva NV (2023) Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. Biohemistry (Mosc) 88: 565–589. https://doi.org/10.1134/S0006297923050012
- Joëls M, Sarabdjitsingh RA, Karst H (2012) Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev 64: 901–938. https://doi.org/10.1124/pr.112.005892
- de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD (2019) Top-down and bottom-up control of stress-coping. J Neuroendocrinol 31: e12675. https://doi.org/10.1111/jne.12675
- de Kloet ER (2013) Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur J Pharmacol 719: 53–62. https://doi.org/10.1016/j.ejphar.2013.04.053
- Sousa N, Cerqueira JJ, Almeida OF (2008) Corticosteroid receptors and neuroplasticity. Brain Res Rev 57: 561–570. https://doi.org/10.1016/j.brainresrev.2007.06.007
- Madalena KM, Lerch JK (2017) The Effect of Glucocorticoid and Glucocorticoid Receptor Interactions on Brain, Spinal Cord, and Glial Cell Plasticity. Neural Plast 8640970. https://doi.org/10.1155/2017/8640970
- Jeanneteau F, Borie A, Chao MV, Garabedian MJ (2019) Bridging the Gap between Brain-Derived Neurotrophic Factor and Glucocorticoid Effects on Brain Networks. Neuroendocrinology 109: 277–284. https://doi.org/10.1159/000496392
- Kim JS, Iremonger KJ (2019) Temporally Tuned Corticosteroid Feedback Regulation of the Stress Axis. Trends Endocrinol Metab 30: 783–792. https://doi.org/10.1016/j.tem.2019.07.005
- Souza-Teodoro LH, de Oliveira C, Walters K, Carvalho LA (2016) Higher serum dehydroepiandrosterone sulfate protects against the onset of depression in the elderly: Findings from the English Longitudinal Study of Aging (ELSA). Psychoneuroendocrinology 64: 40–46. https://doi.org/10.1016/j.psyneuen.2015.11.005
- Suri D, Vaidya VA (2013) Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience 239: 196–213. https://doi.org/10.1016/j.neuroscience.2012.08.065
- Martocchia A, Stefanelli M, Falaschi GM, Toussan L, March MR, Raja S, Romano G, Falaschi P (2013) Targets of anti-glucocorticoid therapy for stress-related diseases. Recent Pat CNS Drug Discov 8: 79–87. https://doi.org/10.2174/1574889811308010007
- Podgorny OV, Gulyaeva NV (2021) Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 157: 370–392. https://doi.org/10.1111/jnc.15265
- Reus VI, Wolkowitz OM, Frederick S (1997) Antiglucocorticoid treatments in psychiatry. Psychoneuroendocrinology 22 Suppl 1: S121– S124. https://doi.org/10.1016/s0306–4530(97)00016–4
- Resmini E, Santos A, Webb SM (2016) Cortisol Excess and the Brain. Front Horm Res 46: 74–86. https://doi.org/10.1159/000443868
- Hill AR, Spencer-Segal JL (2021) Glucocorticoids and the Brain after Critical Illness. Endocrinology 162: bqaa242. https://doi.org/10.1210/endocr/bqaa242
- Gulyaeva NV (2017) Molecular Mechanisms of Neuroplasticity: An Expanding Universe. Biochemistry (Mosc) 82: 237–242. https://doi.org/10.1134/S0006297917030014
- Bauer ME, Teixeira AL (2019) Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci 1437: 57–67. https://doi.org/10.1111/nyas.13712
- Jeon SW, Kim YK (2018) The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J Inflamm Res 11: 179–192. https://doi.org/10.2147/JIR.S141033
- Adzic M, Brkic Z, Mitic M, Francija E, Jovicic MJ, Radulovic J, Maric NP (2018) Therapeutic Strategies for Treatment of Inflammation-related Depression. Curr Neuropharmacol 16: 176–209. https://doi.org/10.2174/1570159X15666170828163048
- Herbert J, Lucassen PJ (2016) Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis – What do we need to know? Front Neuroendocrinol 41: 153–171. https://doi.org/10.1016/j.yfrne.2015.12.001
- Bolshakov AP, Tret'yakova LV, Kvichansky AA, Gulyaeva NV (2021) Glucocorticoids: Dr. Jekyll and Mr. Hyde of Hippocampal Neuroinflammation. Biochemistry (Mosc) 86: 156–167. https://doi.org/10.1134/S0006297921020048
- Dhikav V, Anand KS (2007) Is hippocampal atrophy a future drug target? Med Hypotheses. 68: 1300–1306. https://doi.org/10.1016/j.mehy.2006.09.0402
- Chisholm-Burns MA, Schwinghammer TL, Malone PM, Kolesar JM, Bookstaver PB, Lee KC (eds)(2022) Appendix B – Common Laboratory Tests. In: Pharmacotherapy Principles and Practice. 6th Edition. McGraw-Hill Medical.
- Ben Assayag E, Tene O, Korczyn AD, Shopin L, Auriel E, Molad J, Hallevi H, Kirschbaum C, Bornstein NM, Shenhar-Tsarfaty S, KliperE, Stalder T (2017) High hair cortisol concentrations predict worse cognitive outcome after stroke: Results from the TABASCO prospective cohort study. Psychoneuroendocrinology 82: 133–139. https://doi.org/10.1016/j.psyneuen.2017.05.013
- Tene O, Hallevi H, Korczyn AD, Shopin L, Molad J, Kirschbaum C, Bornstein NM, Shenhar-Tsarfaty S, Kliper E, Auriel E, Usher S, Stalder T, Ben Assayag E (2018) The Price of Stress: High Bedtime Salivary Cortisol Levels Are Associated with Brain Atrophy and Cognitive Decline in Stroke Survivors. Results from the TABASCO Prospective Cohort Study. J Alzheimers Dis 65: 1365–1375. https://doi.org/10.3233/JAD-180486
- Wang J, Guan Q, Sheng Y, Yi Yang, Li Guo, Li W, Gu Y, Han C (2021) The potential predictive value of salivary cortisol on the occurrence of secondary cognitive impairment after ischemic stroke. Neurosurg Rev 44: 1103–1108. https://doi.org/10.1007/s10143–020–01256–9
- Lombardo G, Enache D, Gianotti L, Schatzberg AF, Young AH, Pariante CM, Mondelli V (2019) Baseline cortisol and the efficacy of antiglucocorticoid treatment in mood disorders: A meta-analysis. Psychoneuroendocrinology 110: 104420. https://doi.org/10.1016/j.psyneuen.2019.104420
- Zalachoras I, Houtman R, Atucha E, Meijer OC (2013) Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proc Natl Acad Sci U S A 110: 7910–7915. https://doi.org/10.1073/pnas.1219411110
- De Nicola AF, Meyer M, Guennoun R, Schumacher M, Hunt H, Belanoff J, de Kloet ER, Gonzalez Deniselle MC (2020) Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases. Int J Mol Sci 21: 2137. https://doi.org/10.3390/ijms21062137
- de Kloet ER (2023) Glucocorticoid feedback paradox: a homage to Mary Dallman. Stress 26: 2247090. https://doi.org/10.1080/10253890.2023.2247090
- Dalm S, Karssen AM, Meijer OC, Belanoff JK, de Kloet ER (2019) Resetting the Stress System with a Mifepristone Challenge. Cell Mol Neurobiol 39: 503–522. https://doi.org/10.1007/s10571–018–0614–5
- Kakade AS, Kulkarni YS (2014) Mifepristone: current knowledge and emerging prospects. J Indian Med Assoc 112: 36–40. PMID: 25935948
- Fleseriu M, Biller BM, Findling JW, Molitch ME, Schteingart DE, Gross C, SEISMIC Study Investigators (2012) Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing's syndrome. J Clin Endocrinol Metab 97: 2039–2049. https://doi.org/10.1210/jc.2011–3350
- DeBattista C, Belanoff J, Glass S (2006) Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol Psychiatry 60: 1343–1349. https://doi.org/10.1016/j.biopsych.2006.05.034
- Cotella EM, Morano RL, Wulsin AC, Martelle SM, Lemen P, Fitzgerald M, Packard BA, Moloney RD, Herman JP (2020) Lasting Impact of Chronic Adolescent Stress and Glucocorticoid Receptor Selective Modulation in Male and Female Rats. Psychoneuroendocrinology 112: 104490. https://doi.org/10.1016/j.psyneuen.2019.104490
- Garner B, Phassouliotis C, Phillips L, Markulev C, Butselaar F, Bendall S, Yun Y, McGorry PD (2011). Cortisol and dehydroepiandrosterone-sulphate levels correlate with symptom severity in first-episode psychosis. J Psychiatr Res 45: 249–255. https://doi.org/10.1016/j.jpsychires.2010.06.008
- Young AH, Gallagher P, Porter RJ (2002) Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. Am J Psychiatry 159: 1237–1239. https://doi.org/10.1176/appi.ajp.159.7.1237
- Markopoulou K, Papadopoulos A, Juruena MF, Poon L, Pariante CM, Cleare AJ (2009) The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology 34: 19–26. https://doi.org/10.1016/j.psyneuen.2008.08.004
- Dumas TC, Gillette T, Ferguson D, Hamilton K, Sapolsky RM (2010) Anti-glucocorticoid gene therapy reverses the impairing effects of elevated corticosterone on spatial memory, hippocampal neuronal excitability, and synaptic plasticity. J Neurosci 30: 1712–1720. https://doi.org/10.1523/JNEUROSCI.4402–09.2010
- Rădulescu I, Drăgoi AM, Trifu SC, Cristea MB (2021) Neuroplasticity and depression: Rewiring the brain's networks through pharmacological therapy (Review). Exp Ther Med 22: 1131. https://doi.org/10.3892/etm.2021.10565
- Fitzsimons CP, van Hooijdonk LWA, Morrow JA, Peeters BWMM, Hamilton N, Craighead M, Vreugdenhil E (2009) Antiglucocorticoids, neurogenesis and depression. Mini Rev Med Chem 9: 249–264. https://doi.org/10.2174/138955709787316001
- Murphy BE (1997) Antiglucocorticoid therapies in major depression: a review. Psychoneuroendocrinology. 22 Suppl 1: S125–S132. PMID: 9264159
- Wolkowitz OM, Reus VI (1999) Treatment of depression with antiglucocorticoid drugs. Psychosom Med 6: 698–711. https://doi.org/10.1097/00006842–199909000–00011
- Nandam LS, Brazel M, Zhou M, Jhaveri DJ (2020) Cortisol and Major Depressive Disorder-Translating Findings From Humans to Animal Models and Back. Front Psychiatry 10: 974. https://doi.org/10.3389/fpsyt.2019.00974
- Zajkowska Z, Gullett N, Walsh A, Zonca V, Pedersen GA, Souza L, Kieling C, Fisher HL, Kohrt BA, Mondelli V (2014). Cortisol and development of depression in adolescence and young adulthood – a systematic review and meta-analysis. Psychoneuroendocrinology 136: 105625. https://doi.org/10.1016/j.psyneuen.2021.105625
- Hirtz R, Libuda L, Hinney A, Föcker M, Bühlmeier J, Holterhus P-M, Kulle A, Kiewert C, Hauffa BP, Hebebrand J, Grasemann C (2022) The adrenal steroid profile in adolescent depression: a valuable bio-readout? Transl Psychiatry 12: 255. https://doi.org/10.1038/s41398–022–01966–2
- Schüle C, Baghai TC, Eser D, Rupprecht R (2009) Hypothalamic-pituitary-adrenocortical system dysregulation and new treatment strategies in depression. Expert Rev Neurother 9: 1005–1019. https://doi.org/10.1586/ern.09.52
- Maric NP, Adzic M (2013) Pharmacological modulation of HPA axis in depression – new avenues for potential therapeutic benefits. Psychiatr Danub 25: 299–305. PMID: 24048401
- Wolkowitz OM, Reus VI, Manfredi F, Ingbar J, Brizendine L (1992) Antiglucocorticoid strategies in hypercortisolemic states. Psychopharmacol Bull 28: 247–251. PMID: 1480727
- Wolkowitz OM, Reus VI, Manfredi F, Ingbar J, Brizendine L, Weingartner H (1993) Ketoconazole administration in hypercortisolemic depression. Am J Psychiatry 150: 810–812. https://doi.org/10.1176/ajp.150.5.810
- Wolkowitz OM, Reus VI, Chan T, Manfredi F, Raum W, Johnson R, Canick J (1999) Antiglucocorticoid treatment of depression: double-blind ketoconazole. Biol Psychiatry 45: 1070–1074. https://doi.org/10.1016/s0006–3223(98)00267–4
- Anand A, Malison R, McDougle CJ, Price LH (1995) Antiglucocorticoid treatment of refractory depression with ketoconazole: a case report. Biol Psychiatry 37: 338–340. https://doi.org/10.1016/0006–3223(94)00245-X
- Murphy BE, Filipini D, Ghadirian AM (1993) Possible use of glucocorticoid receptor antagonists in the treatment of major depression: preliminary results using RU486. J Psychiatry Neurosci 18: 209–213. PMID: 8297920
- Reus VI, Wolkowitz OM (2001) Antiglucocorticoid drugs in the treatment of depression. Expert Opin Investig Drugs 10: 1789–1796. https://doi.org/10.1517/13543784.10.10.1789
- Healy DG, Harkin A, Cryan JF, Kelly JP, Leonard BE (1999) Metyrapone displays antidepressant-like properties in preclinical paradigms. Psychopharmacology (Berl) 145: 303–308. https://doi.org/10.1007/s002130051062
- Ding Y, Wei Z, Yan H, Guo W (2021) Efficacy of Treatments Targeting Hypothalamic-Pituitary-Adrenal Systems for Major Depressive Disorder: A Meta-Analysis. Front Pharmacol 12: 732157. https://doi.org/10.3389/fphar.2021.732157
- McAllister-Williams RH, Smith E, Anderson IM, Barnes J, Gallagher P, Grunze HCR, Haddad PM, House AO, Hughes T, Lloyd AJ, McColl EMM, Pearce SHS, Siddiqi N, Sinha B, Speed C, Steen IN, Wainright J, Watson S, Winter FH, Ferrier IN (2013) Study protocol for the randomised controlled trial: antiglucocorticoid augmentation of anti-Depressants in Depression (The ADD Study). BMC Psychiatry 13: 205. https://doi.org/10.1186/1471–244X-13–205
- Sigalas PD, Garg H, Watson S, McAllister-Williams RH, Ferrier IN, Powell TR, Young AH, Cleare AJ, Watson S (2012) Metyrapone in treatment-resistant depression. Ther Adv Psychopharmacol 2: 139–149. https://doi.org/10.1177/2045125312436597
- Strawbridge R, Jamieson A, Hodsoll J, Ferrier IN, McAllister-Williams RH, Powell TR, Young AH, Cleare AJ, Watson S (2021) The Role of Inflammatory Proteins in Anti-Glucocorticoid Therapy for Treatment-Resistant Depression. J Clin Med 10: 784. https://doi.org/10.3390/jcm10040784
- McAllister-Williams RH, Anderson IM, Finkelmeyer A, Gallagher P, Grunze HCR, Haddad PM, HughesT, Lloyd AJ, Mamasoula C, McColl E, Pearce S, Siddiqi N, Sinha BNP, Steen N, Wainwright J, Winter FH, Ferrier IN, Watson S, the ADD Study Team (2016) Antidepressant augmentation with metyrapone for treatment-resistant depression (the ADD study): a double-blind, randomised, placebo-controlled trial. Lancet Psychiatry 3: 117–127. https://doi.org/10.1016/S2215–0366(15)00436–8
- Ferrier IN, Anderson IM, Barnes J (2015) Randomised controlled trial of Antiglucocorticoid augmentation (metyrapone) of antiDepressants in Depression (ADD Study). Southampton (UK): NIHR J Library. PMID: 26086063
- Young AH, Gallagher P, Watson S, Del-Estal D, Owen BM, Ferrier IN (2004) Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology 29: 1538–1545. https://doi.org/10.1038/sj.npp.1300471
- Gallagher P, Malik N, Newham J, Young AH, Ferrier IN, Mackin P (2008) Antiglucocorticoid treatments for mood disorders. Cochrane Database Syst Rev CD005168. https://doi.org/10.1002/14651858.CD005168.pub2
- Gallagher P, Watson S, Dye CE, Young AH, Ferrier IN (2008) Persistent effects of mifepristone (RU-486) on cortisol levels in bipolar disorder and schizophrenia. J Psychiatr Res 42: 1037–1041. https://doi.org/10.1016/j.jpsychires.2007.12.005
- Marco EJ, Wolkowitz OM, Vinogradov S, Poole JH, Lichtmacher J, Reus VI (2002) Double-blind antiglucocorticoid treatment in schizophrenia and schizoaffective disorder: a pilot study. World J Biol Psychiatry 3: 156–161. https://doi.org/10.3109/15622970209150617
- Linnemann C, Lang UE (2020) Pathways Connecting Late-Life Depression and Dementia. Front Pharmacol 11: 279. https://doi.org/10.3389/fphar.2020.00279
- Detka J, Kurek A, Basta-Kaim A, Kubera M, Lasoń W, Budziszewska B (2013) Neuroendocrine link between stress, depression and diabetes. Pharmacol Rep 65: 1591–1600. https://doi.org/10.1016/s1734–1140(13)71520–2
- Roat-Shumway S, Wroolie TE, Watson K, Schatzberg AF, Rasgon NL (2018) Cognitive effects of mifepristone in overweight, euthymic adults with depressive disorders. J Affect Disord 239: 242–246. https://doi.org/10.1016/j.jad.2018.07.014
- Hunt HJ, Donaldson K, Strem M, Tudor, IC, Sweet-Smith S, Sidhu S (2021) Effect of Miricorilant, a Selective Glucocorticoid Receptor Modulator, on Olanzapine-Associated Weight Gain in Healthy Subjects: A Proof-of-Concept Study. J Clin Psychopharmacol 41: 632–637. https://doi.org/10.1097/JCP.0000000000001470
- Gray JD, Kogan JF, Marrocco J, McEwen BS (2017) Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol 13: 661–673. https://doi.org/10.1038/nrendo.2017.97
- Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC (2021) The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 341: 113703. https://doi.org/10.1016/j.expneurol.2021.113703
- Daskalakis NP, Meijer OC, de Kloet ER (2022) Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 18: 100455. https://doi.org/10.1016/j.ynstr.2022.100455
- Meijer OC, Koorneef LL, Kroon J (2018) Glucocorticoid receptor modulators. Ann Endocrinol (Paris) 79: 107–111. https://doi.org/10.1016/j.ando.2018.03.004
Supplementary files
