Integration of single-photon miniature fluorescence microscopy and electrophysiological recording methods for in vivo studying hippocampal neuronal activity
- Authors: Erofeev А.I.1, Vinokurov E.K.1, Antifeev I.E.2, Vlasova О.L.1, Bezprozvanny I.В.1,3
-
Affiliations:
- Peter the Great St. Petersburg polytechnic university
- Institute of Analytical Instrumentation
- University of Texas Southwestern Medical Center at Dallas
- Issue: Vol 110, No 7 (2024)
- Pages: 1180–1206
- Section: EXPERIMENTAL ARTICLES
- URL: https://edgccjournal.org/0869-8139/article/view/651620
- DOI: https://doi.org/10.31857/S0869813924070091
- EDN: https://elibrary.ru/BDKVNM
- ID: 651620
Cite item
Abstract
The miniature single-photon fluorescent microscope (miniscope) enables the visualization of calcium activity in vivo in freely moving laboratory animals, providing the capability to track cellular activity during the investigation of memory formation, learning, sleep, and social interactions. However, the use of calcium sensors for in vivo imaging is limited by their relatively slow (millisecond-scale) kinetics, which complicates the recording of high-frequency spike activity. The integration of methods from single-photon miniature fluorescent microscopy with electrophysiological recording, which possesses microsecond resolution, represents a potential solution to this issue. Such a combination of techniques allows for the simultaneous recording of optical and electrophysiological activity in a single animal in vivo. In this study, a flexible polyimide microelectrode was developed and integrated with the gradient lens of the miniscope. The in vivo tests conducted in this research confirmed that the microelectrode combined with the gradient lens facilitates simultaneous single-photon calcium imaging and local field potential recording in the hippocampus of an adult mouse.
Keywords
Full Text

About the authors
А. I. Erofeev
Peter the Great St. Petersburg polytechnic university
Author for correspondence.
Email: alexandr.erofeew@gmail.com
Institute of Biomedical Systems and Biotechnology
Russian Federation, St. PetersburgE. K. Vinokurov
Peter the Great St. Petersburg polytechnic university
Email: alexandr.erofeew@gmail.com
Institute of Biomedical Systems and Biotechnology
Russian Federation, St. PetersburgI. E. Antifeev
Institute of Analytical Instrumentation
Email: alexandr.erofeew@gmail.com
Russian Federation, St. Petersburg
О. L. Vlasova
Peter the Great St. Petersburg polytechnic university
Email: alexandr.erofeew@gmail.com
Institute of Biomedical Systems and Biotechnology
Russian Federation, St. PetersburgI. В. Bezprozvanny
Peter the Great St. Petersburg polytechnic university; University of Texas Southwestern Medical Center at Dallas
Email: alexandr.erofeew@gmail.com
Institute of Biomedical Systems and Biotechnology, Department of Physiology
Russian Federation, St. Petersburg; United States of America, Dallas, TXReferences
- Wu X, Yang X, Song L, Wang Y, Li Y, Liu Y, Yang X, Wang Y, Pei W, Li W (2021) A Modified Miniscope System for Simultaneous Electrophysiology and Calcium Imaging in vivo. Front Integr Neurosci 15: 682019. https://doi.org/10.3389/fnint.2021.682019
- Erofeev AI, Vinokurov EK, Vlasova OL, Bezprozvanny IB (2023) GCaMP, a Family of Single-Fluorophore Genetically Encoded Calcium Indicators. Rus Physiol J im IM Sechenova 109(7): 819–843. (In Russ). https://doi.org/10.1134/S0022093023040142
- Sofroniew NJ, Flickinger D, King J, Svoboda K (2016) A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife 5. https://doi.org/10.7554/eLife.14472
- Hamel EJ, Grewe BF, Parker JG, Schnitzer MJ (2015) Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86(1): 140–159. https://doi.org/10.1016/j.neuron.2015.03.055
- Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10(5): 413–420. https://doi.org/10.1038/nmeth.2434
- Rovensky Y, Saparin G (1992) Handbook of biological confocal microscopy, revised edition (Ed) James B. Pawley Plenum Press. New York and London (1990, 1989). https://doi.org/10.1002/sca.4950140210
- Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951): 73–76. https://doi.org/10.1126/science.2321027
- Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11): 1369–1377. https://doi.org/10.1038/nbt899
- Ter Veer MJT, Pfeiffer T, Nagerl UV (2017) Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo. Methods Mol Biol 1663: 45–64. https://doi.org/10.1007/978–1–4939–7265–4_5
- Zatonyi A, Madarasz M, Szabo A, Lorincz T, Hodovan R, Rozsa B, Fekete Z (2020) Transparent, low-autofluorescence microECoG device for simultaneous Ca(2+) imaging and cortical electrophysiology in vivo. J Neural Eng 17(1): 016062. https://doi.org/10.1088/1741–2552/ab603f
- Erofeev A, Antifeev I, Bolshakova A, Bezprozvanny I, Vlasova O (2022) In Vivo Penetrating Microelectrodes for Brain Electrophysiology. Sensors (Basel) 22(23). https://doi.org/10.3390/s22239085
- Lu Y, Liu X, Hattori R, Ren C, Zhang X, Komiyama T, Kuzum D (2018) Ultra-low Impedance Graphene Microelectrodes with High Optical Transparency for Simultaneous Deep 2-photon Imaging in Transgenic Mice. Adv Funct Mater 28(31). https://doi.org/10.1002/adfm.201800002
- Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7): 434–439. https://doi.org/10.1038/nnano.2008.174
- Nam Y, Wheeler BC (2011) In vitro microelectrode array technology and neural recordings. Crit Rev Biomed Eng 39(1): 45–61. https://doi.org/10.1615/critrevbiomedeng.v39.i1.40
- Fan B, Wolfrum B, Robinson JT (2021) Impedance scaling for gold and platinum microelectrodes. J Neural Eng 18(5). https://doi.org/10.1088/1741–2552/ac20e5
- Gerwig R, Fuchsberger K, Schroeppel B, Link GS, Heusel G, Kraushaar U, Schuhmann W, Stett A, Stelzle M (2012) PEDOT-CNT Composite Microelectrodes for Recording and Electrostimulation Applications: Fabrication, Morphology, and Electrical Properties. Front Neuroeng 5: 8. https://doi.org/10.3389/fneng.2012.00008
- Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M (1999) A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 93(1): 61–67. https://doi.org/10.1016/s0165–0270(99)00113–2
- Harris AR, Paolini AG (2017) Correlation of Impedance and Effective Electrode Area of Iridium Oxide Neural Electrodes. Austr J Chem 70(9): 1016–1024. https://doi.org/10.1071/CH17218
- Cai Y, Wang X, Yu X, Zhao H, Zhai Z, Wang H (2023) Auto-balancing bridge based wide impedance spectrum measurement with consideration of Op-Amp input impedance. Rev Sci Instrum 94(10). https://doi.org/10.1063/5.0167842
- Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5): 446–451. https://doi.org/10.1038/nn1233
- Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10: 275–309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518
- Karumbaiah L, Saxena T, Carlson D, Patil K, Patkar R, Gaupp EA, Betancur M, Stanley GB, Carin L, Bellamkonda RV (2013) Relationship between intracortical electrode design and chronic recording function. Biomaterials 34(33): 8061–8074. https://doi.org/10.1016/j.biomaterials.2013.07.016
- Cheung KC, Renaud P, Tanila H, Djupsund K (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22(8): 1783–1790. https://doi.org/10.1016/j.bios.2006.08.035
- Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, Moran JM, Melzak J (2002) Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23(13): 2737–2750. https://doi.org/10.1016/s0142–9612(02)00007–8
- Kim BJ, Kuo JT, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E (2013) 3D Parylene sheath neural probe for chronic recordings. J Neural Eng 10(4): 045002. https://doi.org/10.1088/1741–2560/10/4/045002
- Johnston I, McCluskey Associate Professor D, Tan C, Tracey M (2014) Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J Micromech Microengin 24: 035017. https://doi.org/10.1088/0960–1317/24/3/035017
- Kim B, Meng E (2016) Review of polymer MEMS micromachining. J Micromech Microengin 26: 013001. https://doi.org/10.1088/0960–1317/26/1/013001
- Ray S (2023) How Do Local Field Potentials Measured with Microelectrodes Differ from iEEG Activity? Intracranial EEG: A Guide Cognitiv Neuroscientists: 273–282. https://doi.org/10.1007/978–3–031–20910–9_17
- Fiáth R, Hofer KT, Csikós V, Horváth D, Nánási T, Tóth K, Pothof F, Böhler C, Asplund M, Ruther P, Ulbert I (2018) Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Biomed Tech (Berl) 63(3): 301–315. https://doi.org/10.1515/bmt-2017–0154
- Baek DH, Lee J, Byeon HJ, Choi H, Young Kim I, Lee KM, Jungho Pak J, Pyo Jang D, Lee SH (2014) A thin film polyimide mesh microelectrode for chronic epidural electrocorticography recording with enhanced contactability. J Neural Eng 11(4): 046023. https://doi.org/10.1088/1741–2560/11/4/046023
- Cruttenden CE, Taylor JM, Hu S, Zhang Y, Zhu XH, Chen W, Rajamani R (2017) Carbon Nano-Structured Neural Probes Show Promise for Magnetic Resonance Imaging Applications. Biomed Phys Eng Express 4(1). https://doi.org/10.1088/2057–1976/aa948d
- Prochazka A, Mushahwar VK, McCreery DB (2001) Neural prostheses. J Physiol 533(Pt 1): 99–109. https://doi.org/10.1111/j.1469–7793.2001.0099b.x
- Robinson FR, Johnson MT (1961) Histopathological studies of tissue reactions to various metals implanted in cat brains. ASD Tech Rep 61(397): 13.
- Schweigmann M, Caudal LC, Stopper G, Scheller A, Koch KP, Kirchhoff F (2021) Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System. Front Cell Neurosci 15: 720675. https://doi.org/10.3389/fncel.2021.720675
- Cecchetto C, Vassanelli S, Kuhn B (2021) Simultaneous Two-Photon Voltage or Calcium Imaging and Multi-Channel Local Field Potential Recordings in Barrel Cortex of Awake and Anesthetized Mice. Front Neurosci 15: 741279. https://doi.org/10.3389/fnins.2021.741279
- Kuzum D, Takano H, Shim E, Reed JC, Juul H, Richardson AG, de Vries J, Bink H, Dichter MA, Lucas TH, Coulter DA, Cubukcu E, Litt B (2014) Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun 5: 5259. https://doi.org/10.1038/ncomms6259
- Thunemann M, Lu Y, Liu X, Kilic K, Desjardins M, Vandenberghe M, Sadegh S, Saisan PA, Cheng Q, Weldy KL, Lyu H, Djurovic S, Andreassen OA, Dale AM, Devor A, Kuzum D (2018) Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Nat Commun 9(1): 2035. https://doi.org/10.1038/s41467–018–04457–5
- Zhang J, Liu X, Xu W, Luo W, Li M, Chu F, Xu L, Cao A, Guan J, Tang S, Duan X (2018) Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Lett 18(5): 2903–2911. https://doi.org/10.1021/acs.nanolett.8b00087
- Donahue MJ, Kaszas A, Turi GF, Rozsa B, Slezia A, Vanzetta I, Katona G, Bernard C, Malliaras GG, Williamson A (2018) Multimodal Characterization of Neural Networks Using Highly Transparent Electrode Arrays. eNeuro 5(6). https://doi.org/10.1523/ENEURO.0187–18.2018
- Qiang Y, Artoni P, Seo KJ, Culaclii S, Hogan V, Zhao X, Zhong Y, Han X, Wang PM, Lo YK, Li Y, Patel HA, Huang Y, Sambangi A, Chu JSV, Liu W, Fagiolini M, Fang H (2018) Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci Adv 4(9): eaat0626. https://doi.org/10.1126/sciadv.aat0626
- Renz AF, Lee J, Tybrandt K, Brzezinski M, Lorenzo DA, Cerra Cheraka M, Lee J, Helmchen F, Voros J, Lewis CM (2020) Opto-E-Dura: A Soft, Stretchable ECoG Array for Multimodal, Multiscale Neuroscience. Adv Healthc Mater 9(17): e2000814. https://doi.org/10.1002/adhm.202000814
- Kozai TD, Vazquez AL (2015) Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New Challenges and Opportunities. J Mater Chem B3(25): 4965–4978. https://doi.org/10.1039/C5TB00108K
- Seo J-W, Kim K, Seo K-W, Kim MK, Jeong S, Kim H, Ghim J-W, Lee JH, Choi N, Lee J-Y, Lee HJ (2020) Artifact-Free 2D Mapping of Neural Activity In Vivo through Transparent Gold Nanonetwork Array. Advanc Funct Mater 30(34): 2000896. https://doi.org/10.1002/adfm.202000896
- Cho YU, Lim SL, Hong J-H, Yu KJ (2022) Transparent neural implantable devices: a comprehensive review of challenges and progress. npj Flexible Electron 6(1): 53. https://doi.org/10.1038/s41528–022–00178–4
- Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F (2008) Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Optics Express 16(8): 5556–5564. https://doi.org/10.1364/OE.16.005556
- Zong W, Wu R, Chen S, Wu J, Wang H, Zhao Z, Chen G, Tu R, Wu D, Hu Y, Xu Y, Wang Y, Duan Z, Wu H, Zhang Y, Zhang J, Wang A, Chen L, Cheng H (2021) Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nature Methods 18(1): 46–49. https://doi.org/10.1038/s41592–020–01024-z
- Zong W, Obenhaus HA, Skytoen ER, Eneqvist H, de Jong NL, Vale R, Jorge MR, Moser MB, Moser EI (2022) Large-scale two-photon calcium imaging in freely moving mice. Cell 185(7): 1240–1256. https://doi.org/10.1016/j.cell.2022.02.017
- Vogt N (2022) Two-photon imaging in freely behaving mice. Nat Methods 19(5): 518. https://doi.org/10.1038/s41592–022–01502–6
- Aharoni D, Khakh BS, Silva AJ, Golshani P (2019) All the light that we can see: a new era in miniaturized microscopy. Nat Methods 16(1): 11–13. https://doi.org/10.1038/s41592–018–0266-x
- Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12): 875–881. https://doi.org/10.1038/nmeth.1398
- Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y, Gamal AE, Schnitzer MJ (2011) Miniaturized integration of a fluorescence microscope. Nat Methods 8(10): 871–878. https://doi.org/10.1038/nmeth.1694
- Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RP, Ko TH, Burns LD, Jung JC, Schnitzer MJ (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5(11): 935–938. https://doi.org/10.1038/nmeth.1256
- Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG, Huang J, Veleta K, Kantak PA, Aita M, Shilling-Scrivo K, Ramakrishnan C, Deisseroth K, Otte S, Stuber GD (2015) Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160(3): 516–527. https://doi.org/10.1016/j.cell.2014.12.026
- Liberti WA, Perkins LN, Leman DP, Gardner TJ (2017) An open source, wireless capable miniature microscope system. J Neural Eng 14(4): 045001. https://doi.org/10.1088/1741–2552/aa6806
- Jacob AD, Ramsaran AI, Mocle AJ, Tran LM, Yan C, Frankland PW, Josselyn SA (2018) A Compact Head-Mounted Endoscope for In Vivo Calcium Imaging in Freely Behaving Mice. Curr Protoc Neurosci 84(1): e51. https://doi.org/10.1002/cpns.51
- Zhang L, Liang B, Barbera G, Hawes S, Zhang Y, Stump K, Baum I, Yang Y, Li Y, Lin DT (2019) Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals. Curr Protoc Neurosci 86(1): e56. https://doi.org/10.1002/cpns.56
- de Groot A, van den Boom BJG, van Genderen RM, Coppens J, van Veldhuijzen J, Bos J, Hoedemaker H, Negrello M, Willuhn I, De Zeeuw CI, Hoogland TM (2020) NINscope, a versatile miniscope for multi-region circuit investigations. Elife 9. https://doi.org/10.7554/eLife.49987
- Erofeev A, Antifeev I, Vinokurov E, Bezprozvanny I, Vlasova O (2023) An Open-Source Wireless Electrophysiology System for In Vivo Neuronal Activity Recording in the Rodent Brain: 2.0. Sensors (Basel) 23(24). https://doi.org/10.3390/s23249735
- Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1(6): 3166–3173. https://doi.org/10.1038/nprot.2006.450
- Dong Z, Mau W, Feng Y, Pennington ZT, Chen L, Zaki Y, Rajan K, Shuman T, Aharoni D, Cai DJ (2022) Minian, an open-source miniscope analysis pipeline. Elife 11. https://doi.org/10.7554/eLife.70661
- Gerasimov E, Mitenev A, Pchitskaya E, Chukanov V, Bezprozvanny I (2023) NeuroActivityToolkit-Toolbox for Quantitative Analysis of Miniature Fluorescent Microscopy Data. J Imaging 9(11). https://doi.org/10.3390/jimaging9110243
- Kim GH, Kim K, Lee E, An T, Choi W, Lim G, Shin JH (2018) Recent Progress on Microelectrodes in Neural Interfaces. Materials (Basel) 11(10). https://doi.org/10.3390/ma11101995
- Viswam V, Obien MEJ, Franke F, Frey U, Hierlemann A (2019) Optimal Electrode Size for Multi-Scale Extracellular-Potential Recording From Neuronal Assemblies. Front Neurosci 13: 385. https://doi.org/10.3389/fnins.2019.00385
- Zutshi I, Brandon MP, Fu ML, Donegan ML, Leutgeb JK, Leutgeb S (2018) Hippocampal Neural Circuits Respond to Optogenetic Pacing of Theta Frequencies by Generating Accelerated Oscillation Frequencies. Curr Biol 28(8): 1179–1188. https://doi.org/10.1016/j.cub.2018.02.061
- Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256(5059): 1025–1027. https://doi.org/10.1126/science.1589772
- Chrobak JJ, Buzsaki G (1998) Gamma oscillations in the entorhinal cortex of the freely behaving rat. J Neurosci 18(1): 388–398. https://doi.org/10.1523/JNEUROSCI.18–01–00388.1998
- Kemere C, Carr MF, Karlsson MP, Frank LM (2013) Rapid and continuous modulation of hippocampal network state during exploration of new places. PLoS One 8(9): e73114. https://doi.org/10.1371/journal.pone.0073114
- Akoglu H (2018) User's guide to correlation coefficients. Turk J Emerg Med 18(3): 91–93. https://doi.org/10.1016/j.tjem.2018.08.001
- Harrison XA (2021) A brief introduction to the analysis of time-series data from biologging studies. Philos Trans R Soc Lond B Biol Sci 376(1831): 20200227. https://doi.org/10.1098/rstb.2020.0227
- Vannimenus PY, Hardouin P, Thevenon A, Walter MP, Duquesnoy B, Gluckman E, Bauters F, Delcambre B (1988) [Candida spondylodiscitis treated with itraconazole]. Rev Rhum Mal Osteoartic 55(11): 957–958.
- Ward MP, Rajdev P, Ellison C, Irazoqui PP (2009) Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res 1282: 183–200. https://doi.org/10.1016/j.brainres.2009.05.052
- Vymazal M, Vymazalova Z, Frysakova M (1984) Surgical treatment and postoperative correction using gel contact lenses in monocular congenital cataracts. Cesk Oftalmol 40(5): 293–298.
- Yamada H, Kageyama N, Kato T, Sakakibara T (1981) The diagnosis of syringomyelia (author's transl. No Shinkei Geka 9(5): 573–582.
- Coelho BJ, Pinto JV, Martins J, Rovisco A, Barquinha P, Fortunato E, Baptista PV, Martins R, Igreja R (2023) Parylene C as a Multipurpose Material for Electronics and Microfluidics. Polymers (Basel) 15(10). https://doi.org/10.3390/polym15102277
- Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polymer Sci Part B: Polymer Physics 49(1): 18–33. https://doi.org/10.1002/polb.22169
- Robinson DA (1968) The electrical properties of metal microelectrodes. Proceed IEEE56(6): 1065–1071. https://doi.org/10.1109/PROC.1968.6458
- Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6): 407–420. https://doi.org/10.1038/nrn3241
- Neto JP, Baiao P, Lopes G, Frazao J, Nogueira J, Fortunato E, Barquinha P, Kampff AR (2018) Does Impedance Matter When Recording Spikes With Polytrodes? Front Neurosci 12: 715. https://doi.org/10.3389/fnins.2018.00715
- Yang S, Yang Y, Geng L, Adedokum G, Xie D, Liu R, Xu L (2021) Surface Modification to Improve the Electrochemical Performance of Neural Microelectrode Arrays. 5th IEEE Electron Devices Technol & Manufact Confer (EDTM). 8–11 April 2021. 1–3.
- Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148(1): 1–18. https://doi.org/10.1016/j.jneumeth.2005.08.015
- Sankar V, Patrick E, Dieme R, Sanchez JC, Prasad A, Nishida T (2014) Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions. Front Neuroeng 7: 13. https://doi.org/10.3389/fneng.2014.00013
- Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD (2019) High-dimensional geometry of population responses in visual cortex. Nature 571(7765): 361–365. https://doi.org/10.1038/s41586–019–1346–5
- Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, Huang ZJ, Stryker MP (2014) A cortical circuit for gain control by behavioral state. Cell 156(6): 1139–1152. https://doi.org/10.1016/j.cell.2014.01.050
- Kerlin AM, Andermann ML, Berezovskii VK, Reid RC (2010) Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67(5): 858–871. https://doi.org/10.1016/j.neuron.2010.08.002
- Huber D, Gutnisky DA, Peron S, O'Connor DH, Wiegert JS, Tian L, Oertner TG, Looger LL, Svoboda K (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484(7395): 473–478. https://doi.org/10.1038/nature11039
- Komiyama T, Sato TR, O'Connor DH, Zhang YX, Huber D, Hooks BM, Gabitto M, Svoboda K (2010) Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464(7292): 1182–1186. https://doi.org/10.1038/nature08897
- Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5): 862–885. https://doi.org/10.1016/j.neuron.2012.02.011
- Peron S, Chen TW, Svoboda K (2015) Comprehensive imaging of cortical networks. Curr Opin Neurobiol 32: 115–123. https://doi.org/10.1016/j.conb.2015.03.016
- O'Connor DH, Peron SP, Huber D, Svoboda K (2010) Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67(6): 1048–1061. https://doi.org/10.1016/j.neuron.2010.08.026
- Hromadka T, Deweese MR, Zador AM (2008) Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol 6(1): e16. https://doi.org/10.1371/journal.pbio.0060016
- Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K (2015) A motor cortex circuit for motor planning and movement. Nature 519(7541): 51–56. https://doi.org/10.1038/nature14178
- Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458): 295–300. https://doi.org/10.1038/nature12354
- Maravall M, Mainen ZF, Sabatini BL, Svoboda K (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78(5): 2655–2667. https://doi.org/10.1016/S0006–3495(00)76809–3
- Wei Z, Lin BJ, Chen TW, Daie K, Svoboda K, Druckmann S (2020) A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLoS Comput Biol 16(9): e1008198. https://doi.org/10.1371/journal.pcbi.1008198
- Dhawale AK, Poddar R, Wolff SB, Normand VA, Kopelowitz E, Olveczky BP (2017) Automated long-term recording and analysis of neural activity in behaving animals. Elife 6. https://doi.org/10.7554/eLife.27702
- Tolias AS, Ecker AS, Siapas AG, Hoenselaar A, Keliris GA, Logothetis NK (2007) Recording chronically from the same neurons in awake, behaving primates. J Neurophysiol 98(6): 3780–3790. https://doi.org/10.1152/jn.00260.2007
- Barbera G, Liang B, Zhang L, Li Y, Lin DT (2019) A wireless miniScope for deep brain imaging in freely moving mice. J Neurosci Methods 323: 56–60. https://doi.org/10.1016/j.jneumeth.2019.05.008
- Silva AJ (2017) Miniaturized two-photon microscope: seeing clearer and deeper into the brain. Light Sci Appl 6(8): e17104. https://doi.org/10.1038/lsa.2017.104
Supplementary files
