Olfactory Dysfunction in Obesity and Type 2 Diabetes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article analyzes literature data on the close relationship between energy balance and sense of smell. Olfaction is one of the main modalities of hedonic evaluation of food. Odor is one of the most important sensory signals predicting food quality and plays a key role in food selection and consumption. Appetite can be stimulated by various stimuli, but the leading role belongs to olfactory signals (tasty smells) and levels of hormones that signal hunger and satiety. Olfactory perception is subject to hormonal modulation. In this regard, special attention in the article is paid to the modulating function of insulin. Insulin, one of the main metabolic hormones that controls food intake, has an anorexigenic effect not only at the level of the hypothalamus, but also at the level of the olfactory pathway, especially strong in the olfactory bulb. It has a rate of insulin transport two to eight times higher than in other parts of the brain, and it contains the highest concentration of insulin and the highest density of insulin receptor kinase. Thus, insulin is not only able to penetrate to the site of olfactory information processing, but do so quickly. At the same time, insulin and its receptors are localized in the olfactory epithelium, namely in mature olfactory sensory neurons. Therefore, insulin affects the primary stage of perception of an odorous molecule – odor detection, which occurs at the level of the olfactory epithelium. The sense of smell is impaired up to its complete loss in obesity and type 2 diabetes, worsening the quality of life of such patients. The paper examines the effectiveness of intranasal insulin administration to restore olfactory function in metabolic disorders and other diseases.

Full Text

Restricted Access

About the authors

E. V. Bigday

St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: bigday50@mail.ru
Russian Federation, St. Petersburg

A. A. Zuykova

St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation

Email: bigday50@mail.ru
Russian Federation, St. Petersburg

A. V. Pozdnyakov

St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation

Email: bigday50@mail.ru
Russian Federation, St. Petersburg

References

  1. Masood B, Moorthy M (2023) Causes of obesity: a review. Clin Med (Lond) 23(4): 284–291. https://doi.org/10.7861/clinmed.2023–0168
  2. Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14(3): 140–162. https://doi.org/10.1038/nrendo.2017.161
  3. Dallatana A, Cremonesi L, Trombetta M, Fracasso G, Nocini R, Giacomello L, Innamorati G (2023) G Protein-Coupled Receptors and the Rise of Type 2 Diabetes in Children. Biomedicines 11(6): 1576. https://doi.org/10.3390/biomedicines11061576
  4. Faour M, Magnan C, Gurden H, Martin C (2022) Olfaction in the context of obesity and diabetes: Insights from animal models to humans. Neuropharmacology 15(206): 108923. https://doi.org/10.1016/j.neuropharm.2021.108923
  5. Galizzi G, Di Carlo M (2022) Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. Biology (Basel) 11(6): 943. https://doi.org/10.3390/biology11060943
  6. Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F (2023) Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 13(3): 384. https://doi.org/10.3390/metabo13030384
  7. Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA (2012) Olfaction under metabolic influences. Chem Senses 37(9): 769–797. https://doi.org/10.1093/chemse/bjs059
  8. Julliard AK, Al Koborssy D, Fadool DA, Palouzier-Paulignan B (2017) Nutrient Sensing: Another Chemosensitivity of the Olfactory System. Front Physiol 12(8): 468. https://doi.org/10.3389/fphys.2017.00468
  9. Gouveri E, Papanas N (2021) Olfactory Dysfunction: A Complication of Diabetes or a Factor That Complicates Glucose Metabolism? A Narrative Review. J Clin Med 10: 5637. https://doi.org/10.3390/jcm10235637
  10. Fine LG, Riera CE (2019) Sense of Smell as the Central Driver of Pavlovian Appetite Behavior in Mammals. Front Physiol 18(10): 1151. https://doi.org/10.3389/fphys.2019.01151
  11. Mombaerts P (1999) Odorant receptor genes in humans. Curr Opin Genet Dev 9 (3): 315–320. https://doi.org/10.1016/s0959–437x(99)80047–1
  12. Janet R, Fournel A, Fouillen M, Derrington E, Corgnet B, Bensafi M, Dreher JC (2021) Cognitive and hormonal regulation of appetite for food presented in the olfactory and visual modalities. Neuroimage 15(230): 117811. https://doi.org/10.1016/j.neuroimage.2021.117811
  13. Nogi Y, Ahasan MM, Murata Y, Taniguchi M, Sha MFR, Ijichi C, Yamaguchi M (2020) Expression of feeding-related neuromodulatory signalling molecules in the mouse central olfactory system. Sci Rep 10(1): 890. https://doi.org/10.1038/s41598–020–57605–7
  14. Loch D, Breer H, Strotmann J (2015) Endocrine Modulation of Olfactory esponsiveness: Effects of the Orexigenic Hormone Ghrelin. Chem Senses 40: 469–479 https://doi.org/10.1093/chemse/bjv028
  15. Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC (1999) Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 69(4): 584–596. https://doi.org/10.1093/ajcn/69.4.584
  16. Caillol M, Aïoun J, Baly C, Persuy MA, Salesse R (2003) Localization of orexins and their receptors in the rat olfactory system: possible modulation of olfactory perception by a neuropeptide synthetized centrally or locally. Brain Res 960(1–2): 48–61. https://doi.org/10.1016/s0006–8993(02)03755–1
  17. Plum L, Schubert M, Brüning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2): 59–65. https://doi.org/10.1016/j.tem.2005.01.008
  18. Zhuo C, Zhang Q, Wang L, Ma X, Li R, Ping J, Zhu J, Tian H, Jiang D (2023) Insulin Resistance. Diabetes and Schizophrenia: Potential Shared Genetic Factors and Implications for Better Management of Patients with Schizophrenia. CNS Drugs 38: 33–44. https://doi.org/10.1007/s40263–023–01057-w
  19. Suvisaari J, Keinänen J, Eskelinen S, Mantere O (2016) Diabetes and Schizophrenia. Curr Diab Rep 16(2): 16. https://doi.org/10.1007/s11892–015–0704–4
  20. Lacroix MC, Badonnel K, Meunier N, Tan F, Schlegel-Le Poupon C, Durieux D, Monnerie R, Baly C, Congar P, Salesse R, Caillol M (2008) Expression of insulin system in the olfactory epithelium: first approaches to its role and regulation. J Neuroendocrinol 20(10): 1176–1190. https://doi.org/10.1111/j.1365–2826.2008.01777.x
  21. Lars P. van der H, Amer K, Alain A, Willem HG, Geert MJR (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-D-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochemi 94: 1158–1166. https://doi.org/10.1111/j.1471–4159.2005.03269.
  22. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24(8): 855–872. https://doi.org/10.3389/fendo.2014.00161
  23. Dakic T, Jevdjovic T, Lakic I, Ruzicic A, Jasnic N, Djurasevic S, Djordjevic J, Vujovic P (2023) The Expression of Insulin in the Central Nervous System: What Have We Learned So Far? Int J Mol Sci 24(7): 6586. https://doi.org/10.3390/ijms24076586
  24. Bigdaj EV, Bezgacheva EA, Samojlov VO, Коrolyev YN (2018) Influence of Hypoxic Hypoxia on Human Smell Identification Ability. Biophysics 63(5): 1014–1021. https://doi.org/10.1134/s0006350918050044
  25. Duarte AI, Proença T, Oliveira CR, Santos MS, Rego AC (2006) Insulin restores metabolic function in cultured cortical neurons subjected to oxidative stress. Diabetes 55(10): 2863–2870. https://doi.org/10.2337/db06–0030
  26. Pizzagalli MD, Bensimon A, Superti-Furga G (2021) A guide to plasma membrane solute carrier proteins. FEBS J 288(9): 2784–2835. https://doi.org/10.1111/febs.15531
  27. Zhang X, Zhu X, Bi X, Huang J, Zhou L (2022) The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 23(14): 7793. https://doi.org/10.3390/ijms23147793
  28. Hand SC, Hardewig I (1996) Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu Rev Physiol 58: 539–563. https://doi.org/10.1146/annurev.ph.58.030196.0025438
  29. Aimé P, Hegoburu C, Jaillard T, Degletagne C, Garcia S, Messaoudi B, Thevenet M, Lorsignol A, Duchamp C, Mouly AM, Julliard AK (2012) A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS One 7(12): e51227. https://doi.org/10.1371/journal.pone.0051227
  30. Ketterer C, Heni M, Thamer C, Herzberg-Schäfer SA, Häring HU, Fritsche A (2011) Acute, short-term hyperinsulinemia increases olfactory threshold in healthy subjects. Int J Obes (Lond) 35(8): 1135–1138. https://doi.org/10.1038/ijo.2010.251
  31. Tronko MD, Kovzun OI, Pushkarev VM, Sokolova LK, Pushkarev VV (2018) Reception and intracellular mechanisms of insulin action part 2. ENDOKRYNOLOGIA 23(4): 341–355 https://doi.org/10.31793/1680–1466.2018.23–4.341
  32. Kikuta S, Kuboki A, Yamasoba T (2021) Protective Effect of Insulin in Mouse Nasal Mucus Against Olfactory Epithelium Injury. Front Neural Circuits 15: 803769. https://doi.org/10.3389/fncir.2021.803769
  33. Lucero MT (2013) Peripheral Modulation of Smell: Fact or Fiction? Semin Cell Dev Biol 24(1): 58–70. https://doi.org/10.1016/j.semcdb.2012.09.001
  34. Paysan J, Breer H (2001) Molecular physiology of odor detection: current views. Pflugers Arch 441(5): 579–586. https://doi.org/10.1007/s004240000492
  35. Wright JA, Richards T, Becker DL (2012) Connexins and diabetes. Cardiol Res Pract 2012: 496904. https://doi.org/10.1155/2012/496904
  36. Negroni J, Meunier N, Monnerie R, Salesse R, Baly C, Caillol M, Congar P (2012) Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats. PLoS One 7 (9): e45266. https://doi.org/10.1371/journal.pone.0045266
  37. Savigner A, Duchamp-Viret P, Grosmaitre X, Chaput M, Garcia S, Ma M, Palouzier-Paulignan B (2009) Modulation of spontaneous and odorant-evoked activity of rat olfactory sensory neurons by two anorectic peptides, insulin and leptin. J Neurophysiol 101(6): 2898–2906. https://doi.org/10.1152/jn.91169.2008
  38. Villar PS, Delgado R, Vergara C, Reyes JG, Bacigalupo J (2017) Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose. J Neurosci 37(23): 5736–5743. https://doi.org/10.1523/JNEUROSCI.2640–16.2017
  39. Nunez-Parra A, Cortes-Campos C, Bacigalupo J, Garcia M de los A, Nualart F, Reyes JG (2011) Expression and Distribution of Facilitative Glucose (GLUTs) and Monocarboxylate/H+(MCTs) Transporters in Rat Olfactory Epithelia. Chem Senses 36(9): 771–780. https://doi.org/10.1093/chemse/bjr052
  40. Ueha R, Kondo K, Ueha S, Yamasoba T (2018) Dose-Dependent Effects of Insulin-Like Growth Factor 1 in the Aged Olfactory Epithelium. Front Aging Neurosci 10: 385. https://doi.org/10.3389/fnagi.2018.00385
  41. Livingstone C (2013) Insulin-like growth factor-I (IGF-I) and clinical nutrition. Clin Sci (Lond) 125(6): 265–280. https://doi.org/10.1042/CS20120663
  42. Federico G, Maremmani C, Cinquanta L, Baroncelli GI, Fattori B, Saggese G (1999) Mucus of the human olfactory epithelium contains the insulin-like growth factor-I system which is altered in some neurodegenerative diseases. Brain Res 835(2): 306–314. https://doi.org/10.1016/S0006–8993(99)01614–5
  43. Suzuki Y, Takeda M (2002) Expression of insulin-like growth factor family in the rat olfactory epithelium. Anat Embryol 205: 401–405. https://doi.org/10.1007/s00429–002–0266–5
  44. Vicario-Abejón C, Yusta-Boyo MJ, Fernández-Moreno C, de Pablo F (2003) Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia. J Neurosci 23(3): 895–906. https://doi.org/10.1523/JNEUROSCI.23–03–00895.2003
  45. McCurdy RD, Féron F, McGrath JJ, Mackay-Sim A (2005) Regulation of adult olfactory neurogenesis by insulin-like growth factor-I. Eur J Neurosci 22(7): 1581–1588. https://doi.org/10.1111/j.1460–9568.2005.04355.x
  46. Fadool DA, Tucker K, Phillips JJ, Simmen JA (2000) Brain Insulin Receptor Causes Activity-Dependent Current Suppression in the Olfactory Bulb Through Multiple Phosphorylation of Kv1.3. J Neurophysiol 83(4): 2332–2348. https://doi.org/10.1152/jn.2000.83.4.2332
  47. Baly C, Kuczewski N, Badonnel K, Duchamp-Viret P (2022) The metabolic status and olfactory function. Flavor: From Food to Behaviors. 2022. hal-03828195. https://www.researchgate.net/publication/365072685
  48. Daskalou D, Hsieh JW, Hugentobler M, Macario S, Sipione R, Voruz F, Coppin G, Rimmer J, Landis BN (2023) Predictive factors of involuntary weight loss in patients with smell and taste disorders. Rhinology Nov 9. https://doi.org/10.4193/Rhin23.222
  49. Matiashova L, Hoogkamer AL, Timper K (2023) The Role of the Olfactory System in Obesity and Metabolism in Humans: A Systematic Review and Meta-Analysis. Metabolites 14(1): 16. https://doi.org/10.3390/metabo14010016
  50. Catamo E, Tornese G, Concas MP, Gasparini P, Robino A (2021) Differences in taste and smell perception between type 2 diabetes mellitus patients and healthy controls. Nutr Metab Cardiovasc Dis 31(1): 193–200. https://doi.org/10.1016/j.numecd.2020.08.025
  51. Ahn S, Shin HW, Mahmood U, Khalmuratova R, Jeon SY, Jin HR, Choi JS, Kim HS, Kim DW (2016) Chronic anosmia induces depressive behavior and reduced anxiety via dysregulation of glucocorticoid receptor and corticotropin-releasing hormone in a mouse model. Rhinology 54(1): 80–87. https://doi.org/10.4193/Rhino15.209
  52. Thiebaud N, Johnson MC, Butler JL, Bell GA, Ferguson KL, Fadool AR, Fadool JC, Gale AM, Gale DS, Fadool DA (2014) Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J Neurosci 34(20): 6970–6984. https://doi.org/10.1523/JNEUROSCI.3366–13.2014
  53. Newman MP, Féron F, Mackay-Sim A (2000) Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 99(2): 343–350. https://doi.org/10.1016/S0306–4522(00)00194–9
  54. Rivière S, Soubeyre V, Jarriault D, Molinas A, Léger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X (2016) High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 6: 34011. https://doi.org/10.1038/srep34011
  55. Mozzanica F, Ferrulli A, Vujosevic S, Montuori A, Cardella A, Preti A, Ambrogi F, Schindler A, Terruzzi I, Ottaviani F, Luzi L (2022) Olfactory disfunction and diabetic complications in type 2 diabetic patients: a pilot study. Endocrine 75(3): 760–767. https://doi.org/10.1007/s12020–021–02897–6
  56. Naka A, Riedl M, Luger A, Hummel T, Mueller CA (2010) Clinical significance of smell and taste disorders in patients with diabetes mellitus. Eur Arch Otorhinolaryngol 267(4): 547–550. https://doi.org/10.1007/s00405–009–1123–4
  57. Jimenez A, Estudillo E, Guevara-Guzman R (2020) Inflammation in the olfactory bulb: A new mechanismof olfactory dysfunction in T2D? J Neurobiol Physiol 2(1): 12–14. https://doi.org/10.46439/neurobiology.2.007
  58. Le Floch JP, Le Lièvre G, Labroue M, Paul M, Peynegre R, Perlemuter L (1993) Smell dysfunction and related factors in diabetic patients. Diabetes Care 16(6): 934–937. https://doi.org/10.2337/diacare.16.6.934
  59. Flegel C, Vogel F, Hofreuter A, Schreiner BS, Osthold S, Veitinger S, Becker C, Brockmeyer NH, Muschol M, Wennemuth G, Altmüller J, Hatt H, Gisselmann G (2016) Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front Mol Biosci 2: 73. https://doi.org/10.3389/fmolb.2015.00073
  60. Lodovichi C (2020) Role of Axonal Odorant Receptors in Olfactory Topography. Neurosci Insights 15: 2633105520923411. https://doi.org/10.1177/2633105520923411
  61. Francia S, Lodovichi C (2021) The role of the odorant receptors in the formation of the sensory map. BMC Biol 19(1): 174. https://doi.org/10.1186/s12915–021–01116-y
  62. Cheng J, Yang Z, Ge XY, Gao MX, Meng R, Xu X, Zhang YQ, Li RZ, Lin JY, Tian ZM, Wang J, Ning SL, Xu YF, Yang F, Gu JK, Sun JP, Yu X (2022) Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism. Cell Metab 34(2): 240–255. https://doi.org/10.1016/j.cmet.2021.12.022
  63. Wong W (2022) The smell of insulin. Sci Signal 15 (722): eabo6724. https://doi.org/10.1126/scisignal.abo6724.
  64. Huang XT, Li C, Peng XP, Guo J, Yue SJ, Liu W, Zhao FY, Han JZ, Huang YH, Yang-Li, Cheng QM, Zhou ZG, Chen C, Feng DD, Luo ZQ (2017) An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 7: 44120. https://doi.org/10.1038/srep44120
  65. Pan X, Tao S, Tong N (2022) Potential Therapeutic Targeting Neurotransmitter Receptors in Diabetes. Front Endocrinol (Lausanne) 20(13): 884549. https://doi.org/10.3389/fendo.2022.884549
  66. Huang XT, Yue SJ, Li C, Huang YH, Cheng QM, Li XH, Hao CX, Wang LZ, Xu JP, Ji M, Chen C, Feng DD, Luo ZQ (2017) A Sustained Activation of Pancreatic NMDARs Is a Novel Factor of β-Cell Apoptosis and Dysfunction. Endocrinology 158(11): 3900–3913. https://doi.org/10.1210/en.2017–00366
  67. Ruegsegger GN, Manjunatha S, Summer P, Gopala S, Zabeilski P, Dasari S, Vanderboom PM, Lanza IR, Klaus KA, Nair KS (2019) Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes. FASEB J 33(3): 4458–4472. https://doi.org/10.1096/fj.201802043R
  68. Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23(3): 142–153. https://doi.org/10.1016/j.tem.2011.12.008
  69. Tianqi M, Qingmei C, Chen C, Ziqiang L, Dandan F (2020) Excessive Activation of NMDA Receptors in the Pathogenesis of Multiple Peripheral Organs via Mitochondrial Dysfunction, Oxidative Stress, and Inflammation. SN Comprehen Clin Med 2(5): 551–569. https://doi.org/10.1007/s42399–020–00298-w
  70. Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, Herebian D, Kletke O, Klemen MS, Stožer A, Wnendt S, Piemonti L, Köhler M, Ferrer J, Thorens B, Schliess F, Rupnik MS, Heise T, Berggren PO, Klöcker N, Meissner T, Mayatepek E, Eberhard D, Kragl M, Lammert E (2015) Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 21(4): 363–372. https://doi.org/10.1038/nm.3822
  71. Бигдай ЕВ, Самойлов ВО (2022) Влияние нейротрансмиттеров на функционирование обонятельных сенсорных нейронов. Рос физиол журн им. ИМ Сеченова 108(6): 699–711. [Bigdai EV, Samoilov VO (2022) Role of Neurotransmitters in the Functioning of Olfactory Sensory Neurons. Russ Fiziol Zhyrn im IM Sechenova 108(6): 699–711. (In Russ)]. https://doi.org/10.31857/S0869813922060012
  72. Hall RA (2011) Autonomic modulation of olfactory signaling. Sci Signal 4(155): pe1. https://doi.org/10.1126/scisignal.2001672
  73. Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L, Luscombe-Marsh N (2019) Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front Physiol 10: 532. https://doi.org/10.3389/fphys.2019.00532
  74. Henkin RI, Schmidt L, Velicu I (2013) Interleukin 6 in hyposmia. JAMA Otolaryngol Head Neck Surg 139(7): 728–734. https://doi.org/10.1001/jamaoto.2013.3392
  75. Schäfer L, Schriever VA, Croy I (2021) Human olfactory dysfunction: causes and consequences. Cell Tissue Res 383(1): 569–579. https://doi.org/10.1007/s00441–020–03381–9
  76. Kuboki A, Kikuta S, Otori N, Kojima H, Matsumoto I, Reisert J, Yamasoba T (2021) Insulin-Dependent Maturation of Newly Generated Olfactory Sensory Neurons after Injury. ENeuro 8 (3): ENEURO.0168–21.2021. https://doi.org/10.1523/ENEURO.0168–21.2021
  77. Edwin Thanarajah S, Hoffstall V, Rigoux L, Hanssen R, Brüning JC, Tittgemeyer M (2019) The role of insulin sensitivity and intranasally applied insulin on olfactory perception. Sci Rep 9(1): 7222. https://doi.org/10.1038/s41598–019–43693–7
  78. Brünner YF, Benedict C, Freiherr J (2013) Intranasal insulin reduces olfactory sensitivity in normosmic humans. J Clin Endocrinol Metab 98(10): E1626–E1630. https://doi.org/10.1210/jc.2013–2061
  79. Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA (2009) Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 29(20): 6734–6751. https://doi.org/10.1523/JNEUROSCI.1350–09.2009
  80. Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MV (2001) Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci U S A 98(6): 3561–3566. https://doi.org/10.1073/pnas.051634698
  81. Dunn C, Curran MP (2006) Inhaled human insulin (Exubera): a review of its use in adult patients with diabetes mellitus. Drugs 66(7): 1013–1032. https://doi.org/10.2165/00003495–200666070–00019
  82. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1): 29–38. https://doi.org/10.1001/archneurol.2011.233
  83. Lioutas VA, Novak V (2016) Intranasal insulin neuroprotection in ischemic stroke. Neural Regen Res 11(3): 400–401. https://doi.org/10.4103/1673–5374.179040
  84. Brabazon F, Wilson CM, Jaiswal S, Reed J, Frey WH Nd, Byrnes KR (2017) Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab 37(9): 3203–3218. https://doi.org/10.1177/0271678X16685106
  85. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70(6): 440–448. https://doi.org/10.1212/01.WNL.0000265401.62434.36

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Central pathways of the olfactory sensory system. Olfactory epithelium – olfactory epithelium; olfactory nerves – olfactory nerves; olfactory bulb – olfactory bulb; direct projections from the olfactory bulb: olfactory tract – olfactory tract; anterior olfactory nucleus – anterior olfactory nucleus; piriform lobe – pear–shaped lobe; primary olfactory cortex – primary olfactory cortex ( prepiriform cortex - pregrushoid cortex; periamygdaloid cortex – periamygdalar cortex) and secondary olfactory cortex – secondary olfactory cortex (entorhinal cortex – entorhinal cortex); amygdala – amygdala; orbitofrontal and dorsolateral cortices – orbitofrontal and dorsolateral cortex; insular cortex – insular cortex; thalamus – thalamus; hippocampus – hippocampus; hypothalamus is the hypothalamus.

Download (178KB)
3. Fig. 2. Schematic representation of the distribution of receptors for the main metabolic factors in the olfactory mucosa. OSN is an olfactory sensory neuron, IR is an insulin receptor kinase, Ob-R is a leptin receptor, OXR is an orexin receptor, GLUT is a glucose transporter, CB1 is a type 1 cannabinoid receptor, SUS are support cells, NPY Y1 is a Y1 receptor for neuropeptide Y, AdipoR 1 is an adiponectin receptor of the 1st type kind of.

Download (286KB)
4. Fig. 3. The proposed mechanism of olfactory sensitivity attenuation under the influence of insulin. The action of insulin on the insulin receptor activates phospholipase C to form diacylglycerol (DAG) and inositol-(1,4,5)-triphosphate (IP3) from PIP2. IP3 opens an IP3-dependent channel in the OSN plasmolemma for the entry of calcium ions, increasing its concentration in the cytosol. An increase in the concentration of Ca2+ under the action of insulin leads to the activation of calmodulin, which stimulates CaMKII, which inhibits ACIII. A decrease in cAMP reduces the activity of CNG channels, leading to olfactory dysfunction. IR – insulin receptor; PIP2 – phosphatidylinositol -(4,5)-diphosphate; IP3 – inositol- (1,4,5)-triphosphate; IP3 channel – IP3-dependent channel; CNG channel – ion channel dependent on cyclic nucleotides; CaM – calmodulin; CaMKII – Ca2+/calmodulin-dependent protein kinase II; ACIII – adenylate cyclase type III; cAMP – cyclic 3`,5`-adenosine monophosphate. Solid arrows indicate activation processes. Dotted lines

Download (114KB)
5. Fig. 4. Scheme of the mechanism of excitotoxicity of NMDAR in the main. The increased level of glutamate, which occurs in pathology, causes excessive activation of ionotropic NMDAR, manifested in the launch of a significant influx of extracellular Ca2+ into the OSN. As a result, calcium overload occurs in the cytosol and mitochondria. Excessive Ca2+ content leads to mitochondrial dysfunction, accompanied by depolarization of the mitochondrial membrane potential (ΔΨM), decreased ATP production, accumulation of reactive oxygen species (ROS) and release of the cytochrome C apoptosis inducer. NMDAR is an ionotropic glutamate receptor binding N-methyl-D-aspartate; mPTP is a pore that changes the permeability of the mitochondrial membrane, ΔΨM is the mitochondrial membrane potential; ROS are reactive oxygen species.

Download (127KB)

Copyright (c) 2024 Russian Academy of Sciences