Cobalt microinjections into the infralimbic cortex of the anesthetized rat suppresses circulatory and respiratory reactions to the microelectrostimulation of the lateral orbital cortex
- Authors: Gubarevich Е.А.1, Kokurina Т.N.1, Rybakova G.I.1, Tumanova Т.S.1,2, Aleksandrov V.G.1
-
Affiliations:
- Pavlov Institute of Physiology of the Russian Academy of Science
- Herzen State Pedagogical University of Russia
- Issue: Vol 110, No 2 (2024)
- Pages: 216-229
- Section: EXPERIMENTAL ARTICLES
- URL: https://edgccjournal.org/0869-8139/article/view/651673
- DOI: https://doi.org/10.31857/S0869813924020058
- EDN: https://elibrary.ru/DJPVIL
- ID: 651673
Cite item
Abstract
The central autonomous network that controls visceral systems, including circulatory and respiratory systems, includes the visceromotor infralimbic cortex (IL), which is one of the areas of the prefrontal cortex and is located on the medial surface of the large hemispheres. At the same time, there is evidence that areas of the prefrontal cortex located on the orbitofrontal surface, including the lateral orbital cortex (LO), can participate in the control of autonomous functions. The purpose of this work was to experimentally test the hypothesis according to which the participation of LO in the control of respiratory and circulatory functions is realized through IL. To this end, in acute experiments on laboratory rats anesthetized with urethane, the effect of microinjections of cobalt chloride solution (CoCl2) in IL on the reactions of circulatory and respiratory systems caused by microelectrostimulation of LO was investigated. It is known that Co2+ ions are non-specific blockers of synaptic transmission, therefore microinjections of CoCl2 solutions lead to disruption of conduction in the structures of the central nervous system. In the first, control series of experiments, micro-electrical stimulation of LO caused specific responses of the circulatory and respiratory systems, which were consistently reproduced throughout the experiment. In the second, experimental series, the introduction of CoCl2 solution into IL suppressed responses to micro-electrical stimulation of LO, and this effect turned out to be reversible. The obtained results confirmed the hypothesis put forward about the possible participation of IL in the implementation of autonomous LO functions. The elucidation of the mechanisms that ensure the interaction of LO and IL in the context of autonomous control should be the subject of further experimental research.
Full Text

About the authors
Е. А. Gubarevich
Pavlov Institute of Physiology of the Russian Academy of Science
Author for correspondence.
Email: aleksandrovv@infran.ru
Russian Federation, Saint Petersburg
Т. N. Kokurina
Pavlov Institute of Physiology of the Russian Academy of Science
Email: aleksandrovv@infran.ru
Russian Federation, Saint Petersburg
G. I. Rybakova
Pavlov Institute of Physiology of the Russian Academy of Science
Email: aleksandrovv@infran.ru
Russian Federation, Saint Petersburg
Т. S. Tumanova
Pavlov Institute of Physiology of the Russian Academy of Science; Herzen State Pedagogical University of Russia
Email: aleksandrovv@infran.ru
Russian Federation, Saint Petersburg; Saint Petersburg
V. G. Aleksandrov
Pavlov Institute of Physiology of the Russian Academy of Science
Email: aleksandrovv@infran.ru
Russian Federation, Saint Petersburg
References
- Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Сlin Proc 68(10): 988–1001. https://doi.org/10.1016/s0025-6196(12)62272-1
- Lamotte G, Shouma K, Benarroch EE (2021) Stress and central autonomic network. Auton Neurosci 235: 102870. https://doi.org/10.1016/j.autneu.2021.102870
- Aleksandrov VG, Gubarevich EA, Kokurina TN, Rybakova GI, Tumanova TS (2022a) Central autonomic network. Human Physiol 48(6): 715–721. https://doi.org/10.1134/S0362119722600412
- Hurley KM, Herbert H, Moga M, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Compar Neurol 308(2): 249–276. https://doi.org/10.1002/cne.903080210
- Fisk GD, Wyss JM (2000) Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res 859(1): 83–95. https://doi.org/10.1016/s0006-8993(00)01935-1
- Gasparini S, Howland JM, Thatcher AJ, Geerling JC (2020) Central afferents to the nucleus of the solitary tract in rats and mice. J Compar Neurol 528(16): 2708–2728. https://doi.org/10.1002/cne.24927
- Terreberry RR, Neafsey EJ (1987) The rat medial frontal cortex projects directly to autonomic regions of the brainstem. Brain Res Bull 19(6): 639–649. https://doi.org/10.1016/0361-9230(87)90050-5
- Owens NC, Verberne AJ (2001) Regional hemodynamic responses to activation of the medial prefrontal cortex depressor region. Brain Res 919(2): 221–231. https://doi.org/10.1016/s0006-8993(01)03017-7
- Alexandrov VG, Ivanova TG, Alexandrova NP (2007) Prefrontal control of respiration. J Physiol Pharmacol an official J Polish Physiol Soc 58(Suppl 5 (Pt 1)): 17–23.
- Kokurina TN, Gubarevich EA, Rybakova GI, Tumanova TS, Aleksandrov VG (2022) Microelectrostimulation of the rat lateral orbital cortex causes specific reactions of the circulation and respiration. J Evol Biochem Physiol 58(6): 2101–2108. https://doi.org/10.1134/S0022093022060369
- Terreberry RR, Neafsey EJ (1987) The rat medial frontal cortex projects directly to autonomic regions of the brainstem. Brain Res Bull 19(6): 639–649. https://doi.org/10.1016/0361-9230(87)90050-5
- Ruit KG, Neafsey EJ (1990) Hippocampal input to a “visceral motor” corticobulbar pathway: an anatomical and electrophysiological study in the rat. Exp Brain Res 82(3): 606–616. https://doi.org/10.1007/BF00228802
- Resstel LB, Corrêa FM (2006) Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Auton Neurosci: Basic and Clin 126-127: 130–138. https://doi.org/10.1016/j.autneu.2006.02.022
- Cechetto DF (2014) Cortical control of the autonomic nervous system. Exp Physiol 99(2): 326–331. https://doi.org/10.1113/expphysiol.2013.075192
- Александров ВГ, Губаревич ЕА, Кокурина ТН, Рыбакова ГИ, Туманова ТС (2022) Орбитофронтальная кора в системе центрального управления автономными функциями. Успехи физиол наук 53(3): 45–53. [Aleksandrov VG, Gubarevich EA, Kokurina TN, Rybakova GI, Tumanova TS (2022) Orbitofrontal cortex in the system of the central autonomic control. Uspekhi fiziol nauk 53(3): 45–53. (In Russ)]. https://doi.org/10.31857/S0301179822030031
- Rempel-Clower NL (2007) Role of orbitofrontal cortex connections in emotion. Ann NY Acad Sci 1121: 72–86. https://doi.org/10.1196/annals.1401.026
- Chang CH (2017) Lateral orbitofrontal cortical modulation on the medial prefrontal cortex-amygdala pathway: differential regulation of intra-amygdala GABAA and GABAB receptors. Int J Neuropsychopharmacol 20(7): 602–610. https://doi.org/10.1093/ijnp/pyx027
- Chang CH, Ho TW (2017) Inhibitory modulation of medial prefrontal cortical activation on lateral orbitofrontal cortex-amygdala information flow. J Physiol 595(17): 6065–6076. https://doi.org/10.1113/JP274568.
- Babalian A, Eichenberger S, Bilella A, Girard F, Szabolcsi V, Roccaro D, Alvarez-Bolado G, Xu C, Celio MR (2019) The orbitofrontal cortex projects to the parvafox nucleus of the ventrolateral hypothalamus and to its targets in the ventromedial periaqueductal grey matter. Brain Struct Funct 224(1): 293–314. https://doi.org/10.1007/s00429-018-1771-5
- Leemann S, Babalian A, Girard F, Davis F, Celio MR (2022) The PV2 cluster of parvalbumin neurons in the murine periaqueductal gray: connections and gene expression. Brain Struct Funct 227(6): 2049–2072. https://doi.org/10.1007/s00429-022-02491-0
- Illig KR (2005) Projections from orbitofrontal cortex to anterior piriform cortex in the rat suggest a role in olfactory information processing. J Compar Neurol 488(2): 224–231. https://doi.org/10.1002/cne.20595
- Barreiros IV, Ishii H, Walton ME, Panayi MC (2021) Defining an orbitofrontal compass: functional and anatomical heterogeneity across anterior-posterior and medial-lateral axes. Behav Neurosci 135(2): 165–173. https://doi.org/10.1037/bne0000442
- Mesa JR, Wesson DW, Schwendt M, Knackstedt LA (2022) The roles of rat medial prefrontal and orbitofrontal cortices in relapse to cocaine-seeking: A comparison across methods for identifying neurocircuits. Addict Neurosci 4: 100031. https://doi.org/10.1016/j.addicn.2022.100031
- Martínez-Rivera FJ, Pérez-Torres J, Velázquez-Díaz CD, Sánchez-Navarro MJ, Huertas- Pérez CI, Diehl MM, Phillips ML, Haber SN, Quirk GJ (2023) A novel insular/orbital-prelimbic circuit that prevents persistent avoidance in a rodent model of compulsive behavior. Biol Psychiat 93(11): 1000–1009. https://doi.org/10.1016/j.biopsych.2022.02.008
- Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3): 206–219. https://doi.org/10.1093/cercor/10.3.206
- Smith R, Thayer JF, Khalsa SS, Lane RD (2017) The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev 75: 274–296. https://doi.org/10.1016/j.neubiorev.2017.02.003
- Kretz R (1984) Local cobalt injection: a method to discriminate presynaptic axonal from postsynaptic neuronal activity. J Neurosci Methods 11(2): 129–135. https://doi.org/10.1016/0165-0270(84)90030-x
- Paxinos G, Watson C (eds) (1998) The rat brain in stereotaxic coordinates. Fourth edition. Acad Press.
- Nuseir K, Heidenreich BA, Proudfit HK (1999) The antinociception produced by microinjection of a cholinergic agonist in the ventromedial medulla is mediated by noradrenergic neurons in the A7 catecholamine cell group. Brain Res 822(1-2): 1–7. https://doi.org/10.1016/s0006-8993(98)01195-0. PMID: 10082877
- Crestani CC, Alves FH, Correa FM, Guimarães FS, Joca SR (2010) Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test. Behav Brain Funct 6: 30. https://doi.org/10.1186/1744-9081-6-30
- Fortaleza EA, Scopinho AA, Corrêa FM (2012) Paraventricular and supraoptic nuclei of the hypothalamus mediate cardiovascular responses evoked by the microinjection of noradrenaline into the medial amygdaloid nucleus of the rat brain. Neuroscience 219: 157–165. https://doi.org/10.1016/j.neuroscience.2012.05.051
- Malpeli JG, Burch BD (1982) Cobalt destroys neurons without destroying fibers of passage in the lateral geniculate nucleus of the cat. Neurosci Lett 32(1): 29–34. https://doi.org/10.1016/0304-3940(82)90224-5
- Fortaleza EA, Ferreira-Junior NC, Lagatta DC, Resstel LB, Corrêa FM (2015) The medial amygdaloid nucleus modulates the baroreflex activity in conscious rats. Autonom Neurosci 193: 44–50. https://doi.org/10.1016/j.autneu.2015.07.003
- Resstel LB, Alves FH, Reis DG, Crestani CC, Corrêa FM, Guimarães FS (2008) Anxiolytic-like effects induced by acute reversible inactivation of the bed nucleus of stria terminalis. Neuroscience 154(3): 869–876. https://doi.org/10.1016/j.neuroscience.2008.04.007
- Granjeiro EM, Scopinho AA, Corrêa FM, Resstel LB (2011) Prelimbic but not infralimbic cortex is involved in the pressor response to chemoreflex activation in awake rats. Exp Physiol 96(5): 518–527. https://doi.org/10.1113/expphysiol.2011.057596
- Tavares RF, Corrêa FM, Resstel LB (2009) Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats. J Neurosci Res 87(11): 2601–2607. https://doi.org/10.1002/jnr.22070
- Alves FH, Crestani CC, Corrêa FM (2010) The insular cortex modulates cardiovascular responses to acute restraint stress in rats. Brain Res 1333: 57–63. https://doi.org/10.1016/j.brainres.2010.03.077
- Fisk GD, Wyss JM (2000) Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res 859(1): 83–95. https://doi.org/10.1016/s0006-8993(00)01935-1
- Rostami B, Hatam M (2022) Cent nucleus of amygdala mediate pressor response elicited by microinjection of angiotensin II into the parvocellular paraventricular nucleus in rats. Iran J Med Sci 47(3): 272–279. https://doi.org/10.30476/ijms.2021.90015.2080
- Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Compar Neurol 519(18): 3766–3801. https://doi.org/10.1002/cne.22733
- Izquierdo A (2017) Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. J Neurosci 37(44): 10529–10540. https://doi.org/10.1523/JNEUROSCI.1678-17.2017
- Mathiasen ML, Aggleton JP, Witter MP (2023) Projections of the insular cortex to orbitofrontal and medial prefrontal cortex: a tracing study in the rat. Front Neuroanatom 17: 1131167. https://doi.org/10.3389/fnana.2023.1131167
- Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Sruct Funct 212(2): 149–179. https://doi.org/10.1007/s00429-007-0150-4
- Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong HW (2014) Neural networks of the mouse neocortex. Cell 156(5): 1096–1111. https://doi.org/10.1016/j.cell.2014.02.023
- Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888(1): 83–101. https://doi.org/10.1016/s0006-8993(00)03013-4
- Stornetta RL, Inglis MA, Viar KE, Guyenet PG (2016) Afferent and efferent connections of C1 cells with spinal cord or hypothalamic projections in mice. Brain Struct Funct 221(8): 4027–4044. https://doi.org/10.1007/s00429-015-1143-3
Supplementary files
