Event-Related Potentials in Cued Go/NoGo Task are Possible Neuromarkers of Monotony
- Authors: Pronina M.V.1, Starchenko M.G.1, Boytsova Y.A.1, Bogdan A.A.1, Khomenko Y.G.1, Kataeva G.V.1, Shichkina Y.A.1, Kropotov Y.D.1
-
Affiliations:
- Saint-Petersburg Electrotechnical University “LETI”
- Issue: Vol 109, No 12 (2023)
- Pages: 1935-1951
- Section: EXPERIMENTAL ARTICLES
- URL: https://edgccjournal.org/0869-8139/article/view/651702
- DOI: https://doi.org/10.31857/S0869813923120087
- EDN: https://elibrary.ru/CHYYXJ
- ID: 651702
Cite item
Abstract
Monotony or mental fatigue occurs during performing low-content and monotonous work, including the work of the operator. It is accompanied by a decrease in the concentration of attention and the speed of its switching, as well as slowing in the processes of perception and motor reactions, which can lead to a loss of vigilance, self-control and the occurrence of drowsiness and, consequently, an increase in the risk of industrial injuries and accidents. In this regard, an urgent task is to develop methods for monitoring the human condition in the process of performing monotonous activities. We investigated the effect of monotony on event-related potentials (ERPs) in the visual cued Go/NoGo test. We analyzed 31-channel EEG data of 25 healthy subjects recorded before and after performing four tests with a total duration of around 1.5 hours, representing the same type of tasks with different instructions and simulating the conditions of monotonous work. After performing four tests, we observe an increase of P2 wave, decrease of the P3 Cue wave and the contingent negative variation (CNV) wave in the Cue condition, as well as the decrease of P300 wave in the NoGo condition. The results obtained in this work are assumed to reflect attenuation in proactive and reactive cognitive control during monotony and allow us to consider the P2, P3 Cue, CNV and P3 NoGo waves as possible candidates for the role of neuromarkers of monotony, which makes it promising to use these indicators in systems for monitoring the human condition during operating work.
About the authors
M. V. Pronina
Saint-Petersburg Electrotechnical University “LETI”
Author for correspondence.
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
M. G. Starchenko
Saint-Petersburg Electrotechnical University “LETI”
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
Yu. A. Boytsova
Saint-Petersburg Electrotechnical University “LETI”
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
A. A. Bogdan
Saint-Petersburg Electrotechnical University “LETI”
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
Yu. G. Khomenko
Saint-Petersburg Electrotechnical University “LETI”
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
G. V. Kataeva
Saint-Petersburg Electrotechnical University “LETI”
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
Yu. A. Shichkina
Saint-Petersburg Electrotechnical University “LETI”
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
Yu. D. Kropotov
Saint-Petersburg Electrotechnical University “LETI”
Email: marina.v.pronina@gmail.com
Russia, St. Petersburg
References
- Леонова АБ (1984) Психодиагностика функциональных состояний человека. М. Изд-во Моск ун-та. [Leonova AB (1984) Psychodiagnostics of human functional states] M. Moscow Univer Press. (In Russ)].
- Hu X, Lodewijks G (2020) Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. J Safety Res 72: 173–187. https://doi.org/10.1016/j.jsr.2019.12.015
- May JF, Baldwin CL (2009) Driver fatigue: The importance of identifying causal factors of fatigue when considering detection and countermeasure technologies. Transport Res Part F: Traffic Psychol Behav 12(3): 218–224. https://doi.org/10.1016/j.trf.2008.11.005
- Williamson A, Lombardi DA, Folkard S, Stutts J, Courtney TK, Connor JL (2011) The link between fatigue and safety. Accid Anal Prevent 43: 498–515. https://doi.org/10.1016/j.aap.2009.11.011
- Zhang Y, Ma J, Zhang C, Chang R (2021) Electrophysiological frequency domain analysis of driver passive fatigue under automated driving conditions. Scient Rep 11: 20348. https://doi.org/10.1038/s41598-021-99680-4
- Wascher E, Heppner H, Kobald SO, Arnau S, Getzmann S, Möckel T (2016a) Age-Sensitive Effects of Enduring Work with Alternating Cognitive and Physical Load. A Study Applying Mobile EEG in a Real Life Working Scenario. Front Hum Neurosci 9: 711. https://doi.org/10.3389/fnhum.2015.00711
- Wascher E, Getzmann S, Karthaus M (2016b) Driver state examination–Treading new paths. Accid Anal Prev 91: 157–165. https://doi.org/10.1016/j.aap.2016.02.029
- Tanaka M, Shigihara Y, Ishii A, Funakura M, Kanai E, Watanabe Y (2012) Effect of mental fatigue on the central nervous system: An electroencephalography study. Behav Brain Funct 8(1): 48. https://doi.org/10.1186/1744-9081-8-48
- Ahn S, Nguyen T, Jang H, Kim JG, Jun SC (2016). Exploring neurophysiological correlates of drivers’ mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Front Human Neurosci 10: 219. https://doi.org/10.3389/fnhum.2016.00219
- Кирой ВН, Асланян ЕВ (2005) Общие закономерности формирования состояния монотонии. Журн высш нерв деят 55 (6): 768–776. [Kiroy VN, Aslanyan EV (2005) General patterns of formation of the state of monotony. J Higher Nerv Activ 55 (6): 768–776. (In Russ)].
- Лебедева НН, Каримова ЕД (2014) Нейрофизиологические проявления состояния монотонии у операторов с различной межполушарной асимметрией альфа-активности. Журн высш нерв деят 64(4): 428. [Lebedeva NN, Karimova ED (2014) Neurophysiological manifestations of the state of monotony in operators with different interhemispheric asymmetry of alpha activity. J Higher Nerv Activ 64 (4): 428. (In Russ)].
- Wang C, Li B, Yao Y (2021) Proactive Control Mediates the Relationship Between Working Memory and Math Ability in Early Childhood. Front Psychol 12: 611429. https://doi.org/10.3389/fpsyg.2021.611429
- Kropotov JD, Pronina MV, Ponomarev VA, Poliakov YI, Plotnikova IV, Mueller A (2019) Latent ERP components of cognitive dysfunctions in ADHD and schizophrenia. Clin Neurophysiol 130(4): 445–453.https://doi.org/10.1016/j.clinph.2019.01.015
- Kropotov J, Ponomarev V, Tereshchenko EP, Müller A, Jäncke L (2016) Effect of Aging on ERP Components of Cognitive Control. Front Aging Neurosci 8: 69. https://doi.org/10.3389/fnagi.2016.00069
- Braver TS (2012) The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci 16(2): 106–113. https://doi.org/10.1016/j.tics.2011.12.010
- Näätänen R, Picton TW (1986) N2 and automatic versus controlled processes. Electroencephal Clin Neurophysiol Suppl 38: 169–186.
- Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent Negative Variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature (Lond) 203: 380.
- Bekker EM, Kenemans JL,Verbaten MN (2004) Electrophysiological correlates ofattention, inhibition, sensitivity and bias in a continuous performance task. Clin Neurophysiol 115: 2001–2013.
- Verleger R (2020) Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b. Psychophysiology 57(7): e13542. https://doi.org/10.1111/psyp.13542
- Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1): 65–94. https://doi.org/10.1037/0033-2909.121.1.65
- van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77(4-5): 477–482. https://doi.org/10.1016/s0031-9384(02)00930-7
- Boksem MA, Meijman TF, Lorist MM (2006) Mental fatigue, motivation and action monitoring Biol Psychol 72(2): 123–132.https://doi.org/10.1016/j.biopsycho.2005.08.007
- Lorist MM (2008) Impact of top-down control during mental fatigue. Brain Res 1232: 113–123. https://doi.org/10.1016/j.brainres.2008.07.053
- Käthner I, Wriessnegger SC, Müller-Putz GR, Kübler A, Halder S (2014) Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol Psychol 102: 118–129. https://doi.org/10.1016/j.biopsycho.2014.07.014
- Jia H, Lin CJ, Wang EM (2022) Effects of mental fatigue on risk preference and feedback processing in risk decision-making. Sci Rep 12: 10695. https://doi.org/10.1038/s41598-022-14682-0
- Сериков ВВ, Обознов АА, Колягин ВЯ, Закревская АА (2018) Применение когнитивного вызванного потенциала Р-300 для оценки работы мозга машинистов. Организ психол и психол труда 3(2): 166–182. [Serikov BB, Oboznov AA, Kolyagin VYA, Zakrevskaya AA (2018) The use of cognitive evoked potential P-300 to assess the work of the brain of machinists. Organizat Psychol and Psychol Work 3(2): 166–182. (In Russ)].
- Takács E, Barkaszi I, Altbäcker A, Czigler I, Balázs L (2019) Cognitive resilience after prolonged task performance: an ERP investigation. Exp Brain Res 237(2): 377–388. https://doi.org/10.1007/s00221-018-5427-8
- Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1): 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024
- Reteig LC, van den Brink RL, Prinssen S, Cohen MX, Slagter HA (2019) Sustaining attention for a prolonged period of time increases temporal variability in cortical responses. Cortex 117: 16–32. https://doi.org/10.1016/j.cortex.2019.02.016
- Albrecht B, Brandeis D, Uebel-von Sandersleben H, Valko L, Heinrich H, Xu X, Drechsler R, Heise A, Kuntsi J, Müller UC, Asherson P, Steinhausen HC, Rothenberger A, Banaschewski T (2014) Genetics of preparation and response control in ADHD: the role of DRD4 and DAT1. J Child Psychol Psychiatry 55(8): 914–923. https://doi.org/10.1111/jcpp.12212
- Grane VA, Brunner JF, Endestad T, Aasen IES, Kropotov J, Knight RT, Solbakk AK (2016) ERP Correlates of Proactive and Reactive Cognitive Control in Treatment-Naïve Adult ADHD. PLoS One 11(7): e0159833. https://doi.org/10.1371/journal.pone.0159833
- Elke S, Wiebe SA (2017) Proactive control in early and middle childhood: An ERP study. Dev Cogn Neurosci 26: 28–38. https://doi.org/10.1016/j.dcn.2017.04.005
- Rêgo GG, Gonçalves ÓF, Boggio PS (2022) Attention neuroenhancement through tDCS or neurofeedback: a randomized, single-blind, controlled trial. Sci Rep 12(1): 17613. https://doi.org/10.1038/s41598-022-22245-6
- Rohrbaugh JW, McCallum WC, Gaillard AW, Simons RF, Birbaumer N, Papakostopoulos D (1986) ERPs associated with preparatory and movement-related processes. A review. Electroencephal Clin Neurophysiol Suppl 38: 189–229.
- Aydin M, Carpenelli AL, Lucia S, Di Russo F (2022) The Dominance of Anticipatory Prefrontal Activity in Uncued Sensory-Motor Tasks. Sensors (Basel) 22(17): 6559. https://doi.org/10.3390/s22176559
- Kóbor A, Kardos Z, Horváth K, Janacsek K, Takács Á, Csépe V, Nemeth D (2021) Implicit anticipation of probabilistic regularities: Larger CNV emerges for unpredictable events. Neuropsychologia 156: 107826. https://doi.org/10.1016/j.neuropsychologia.2021.107826
- Wu Y, Ma S, He X, Xiang S, Qi S (2021) Trait anxiety modulates the temporal dynamics of Stroop task switching: An ERP study. Biol Psychol 163: 108144. https://doi.org/10.1016/j.biopsycho.2021.108144
- Osborne KJ, Kraus B, Lam PH, Vargas T, Mittal VA (2020) Contingent Negative Variation Blunting and Psychomotor Dysfunction in Schizophrenia: A Systematic Review. Schizophr Bull 46(5): 1144–1154. https://doi.org/10.1093/schbul/sbaa043
- Catalano LT, Wynn JK, Green MF, Gold JM (2022) Reduced neural activity when anticipating social versus nonsocial rewards in schizophrenia: Preliminary evidence from an ERP study. Schizophr Res 246: 7–16. https://doi.org/10.1016/j.schres.2022.05.028
- Hohnsbein J, Falkenstein M, Hoormann J (1998) Performance differences in reaction tasks are reflected in event-related brain potentials (ERPs). Ergonomics 41(5): 622–633. https://doi.org/10.1080/001401398186793
- Aasen IE, Brunner JF (2016) Modulation of ERP components by task instructions in a cued go/no-go task. Psychophysiology 53(2): 171–185. https://doi.org/10.1111/psyp.12563
- Finnigan S, O’Connell RG, Cummins TDR, Broughton M, Robertson IH (2011) ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology 48: 601–611. https://doi.org/10.1111/j.1469-8986.2010.01128.x
- Freunberger R, Klimesch W, Doppelmayr M, Höller Y (2007) Visual P2 component is related to theta phase-locking. Neurosci Lett 426: 181–186. https://doi.org/10.1016/j.neulet.2007.08.062
- Cepeda-Freyre HA, Garcia-Aguilar G, Eguibar JR, Cortes C (2020) Brain Processing of Complex Geometric Forms in a Visual Memory Task Increases P2 Amplitude. Brain Sci 10(2): 114. https://doi.org/10.3390/brainsci10020114
- Male AG, O’Shea RP (2023) Attention is required for canonical brain signature of prediction error despite early encoding of the stimuli. PLoS Biol 21(6): e3001866. https://doi.org/10.1371/journal.pbio.3001866
- Sun L, Guo Z, Yuan X, Wang X, Su C, Jiang J, Li X (2022) An Investigation of the Effects of Brain Fatigue on the Sustained Attention of Intelligent Coal Mine VDT Operators. Int J Environ Res Public Health 19(17): 11034.https://doi.org/10.3390/ijerph191711034
- Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112(12): 2224–2232. https://doi.org/10.1016/s1388-2457(01)00691-5
- Wessel JR, Aron AR (2014) It’s not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiology 52: 472–480. https://doi.org/10.1111/psyp.12374
- Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS (2013) Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int J Psychophysiol 87: 217–233. https://doi.org/10.1016/j.ijpsycho.2012.08.001
Supplementary files
