Evoked synchronization of theta EEG rhythm during preparation of memory-guided saccades and antisaccaded in normals and in patients with clinically high risk for schizophrenia
- 作者: Pavlov A.V.1, Slavutskaya M.V.1,2, Omelchenko M.A.2, Kotenev A.V.1, Lebedeva I.S.2
-
隶属关系:
- Lomonosov Moscow State University
- Mental Health Research Center
- 期: 卷 110, 编号 9 (2024)
- 页面: 1440-1454
- 栏目: EXPERIMENTAL ARTICLES
- URL: https://edgccjournal.org/0869-8139/article/view/651751
- DOI: https://doi.org/10.31857/S0869813924090125
- EDN: https://elibrary.ru/AJEZQH
- ID: 651751
如何引用文章
详细
One of the informative and widely used approaches to understanding the pathogenetic (including neurobiological) mechanisms of schizophrenia is the study of patients with clinically high risk (CHR) for the disease. The power and topography of the theta rhythm event-related synchronization (ERS) related to peripheral stimulus that must be remembered (memory-guided saccades/antisaccades paradigm) have been studied in the groups of 20 mentally healthy subjects and 20 patients with CHR. The analysis was carried out according to the Pfurtscheller method. Based on the saccades latency value and the error numbers, the task performance was decreased in patients with CHR compared to healthy subjects. Intergroup differences by theta rhythm ERS magnitude and topography were found for three consecutive delay period intervals (900 ms each) before saccades to the right and antisaccades to the left. The findings are considered as being the reflection of violations of the spatial attention and working memory maintaining in CHR patients that has a certain interhemispheric asymmetry. It has been suggested an activation of the compensatory processes and the cognitive control reorganization of the fronto-parietal networks with predominantly right hemisphere preservation at the early stage of schizophrenia development.
全文:

作者简介
A. Pavlov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: alexandersun121@gmail.com
俄罗斯联邦, Moscow
M. Slavutskaya
Lomonosov Moscow State University; Mental Health Research Center
Email: alexandersun121@gmail.com
俄罗斯联邦, Moscow; Moscow
M. Omelchenko
Mental Health Research Center
Email: alexandersun121@gmail.com
俄罗斯联邦, Moscow
A. Kotenev
Lomonosov Moscow State University
Email: alexandersun121@gmail.com
俄罗斯联邦, Moscow
I. Lebedeva
Mental Health Research Center
Email: alexandersun121@gmail.com
俄罗斯联邦, Moscow
参考
- Rizzolatti G, Riggio L, Dascola I, Umiltá C (1987) Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 25(1): 31–40. https://doi.org/10.1016/0028-3932(87)90041-8
- Kastner S, DeSimone K, Konen CS, Szczepanski SM, Weiner KS, Schneider KA (2007) Topographic Maps in Human Frontal Cortex Revealed in Memory-Guided Saccade and Spatial Working-Memory Tasks. J Neurophysiol 97(5): 3494–3507. https://doi.org/10.1152/jn.00010.2007
- Damiano C, Walther DB (2019) Distinct roles of eye movements during memory encoding and retrieval. Cognition 184: 119–129. https://doi.org/10.1016/j.cognition.2018.12.014
- Ding L, Gold JI (2011) Neural Correlates of Perceptual Decision Making before, during, and after Decision Commitment in Monkey Frontal Eye Field. Cerebral Cortex 22(5): 1052–1067. https://doi.org/10.1093/cercor/bhr1
- Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Neurophysiology 49(5): 1268–1284. https://doi.org/10.1152/jn.1983.49.5.1268
- Offen Sh, Gardner J, Schluppeck D, Heeger D (2010) Differential roles for frontal eye fields (FEF) and intraparietal sulcus (IPS) in visual working memory and visual attention. J Vis 10(11): 28. https://doi.org/10.1167/10.11.28
- Guo JY, Raglanda JD, Cartera CS (2019) Memory and Cognition in Schizophrenia. Mol Psychiatry 24(5): 633–642. https://doi.org:10.1038/s41380-018-0231-1
- Славуцкая МВ, Моисеева ВВ, Шульговский ВВ (2008) Внимание и движения глаз. Психофизиологические представления, нейрофизиологические модели и ЭЭГ корреляты. Журн высш нерв деятельн им ИП Павлова 58 (2): 131–150. [Slavutskaya MV, Moiseeva VV, Shulgovskii VV (2008) Attention and eye movements. Psychophysiological concepts, neurophysiological models and EEG correlates. Zh Vyssh Nerv Deiat Im IP Pavlova. (In Russ)].
- Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110: 1842–1857. https://doi.org/10.1016/s1388-2457(99)00141-8
- Wang X-J (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3): 1195–1268. https://doi.org/10.1152/physrev.00035.2008
- Бочкарев ВК, Киренская АВ, Солнцева СВ, Ткаченко АА (2017) Специфика пространственной организации вызванных ритмов ЭЭГ у пациентов с параноидной шизофренией. Журн неврол психиатр им СС Корсакова 117(1): 29–35. [Bochkarev VK, Kirenskaya AV, Solntseva SV, Tkachenko AA (2017) Specificity of the spatial organization of evoked EEG rhythms in patients with paranoid schizophrenia. J Neurol Psychiatry SS Korsakov. (In Russ)]. https://doi.org/10.17116/jnevro20171171129-35
- Kang SS, MacDonald AW, Chafee MV, Im Ch-H, Bernat EM, Davenport NV, Sponheim SR (2018) Abnormal cortical neural synchrony during working memory in Schizophrenia. Clin Neurophysiol 129(1): 210–221. https://doi.org/10.1016/j.clinph.2017.10.024
- Obyedkov I, Skuhareuskaya M, Skugarevsky O, Obyedkov V, Buslauski P, Skuhareuskaya T, Waszkiewicz N (2019) Saccadic eye movements in different dimensions of schizophrenia and in clinical high-risk state for psychosis. BMC Psychiatry 19(1): 110. https://doi.org/10.1186/s12888-019-2093-8
- Ekin M, Akdal G, Bora E (2024) Antisaccade error rates in first-episode psychosis, ultra-high risk for psychosis and unaffected relatives of schizophrenia: A systematic review and meta-analysis. Schizophr Res 266: 41–49. https://doi.org/10.1016/j.schres.2024.02.016
- Caldani S, Bucci MP, Lamy JC, Seassau M, Bendjemaa N, Gadel R, Gaillard R, Krebs MO, Amado I (2017) Saccadic eye movements as markers of schizophrenia spectrum: Exploration in at-risk mental states. Schizophr Res 181: 30–37. https://doi.org/10.1016/j.schres.2016.09.003
- Омельченко МА (2021) Клинико-психопатологические особенности юношеских депрессий с аттенуированными симптомами шизофренического спектра. Психиатрия 19(1): 16–25. [Omelchenko MA (2021) Clinical and psychopathological features of juvenile depression with attenuated symptoms of the schizophrenia spectrum. Psychiatry. (In Russ)]. https://doi.org/10.30629/2618-6667-2021-19-1-16-25
- Гнездицкий ВВ (2004) Обратная задача ЭЭГ и клиническая энцефалография (картирование и локализация источников электрической активности мозга). Москва. МЕД пресс-информ. [Gnezdicki VV (2004) Inverse EEG problem and clinical encephalography (mapping and localization of sources of electrical activity of the brain). Moscow. MED press-inform. (In Russ)].
- Sklar AL, Coffman BA, Salisbury DF (2020) Localization of early-stage visual processing deficits at schizophrenia spectrum illness onset using magnetoencephalography. Schizophr Bull 46(4): 955–963. https://doi.org/10.1093/schbul/sbaa010
- Luck SJ, Gold JM (2008) The Construct of Attention in Schizophrenia. Biol Psychiatry 64(1): 34–39. https://doi.org/10.1016/j.biopsych.2008.02.014
- Evans WJ, Schwartz BD (1997) Attentional mechanisms of saccadic eye movements in schizophrenia. Neuropsychiatr Neuropsychol Behav Neurol 10(1): 17–24. PMID: 9118193
- Awh E, Jonides J (2001) Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci 5(3): 119–126. https://doi.org/10.1016/s1364-6613(00)01593-x
- Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3): 201–215. https://doi.org/10.1038/nrn755
- Prime SL, Vesia M, Crawfor JD (2008) Transcranial Magnetic Stimulation over posterior parietal cortex disrupts transsaccadic memory of multiple objects. J Neurosci 8(27): 6938–6949. https://doi.org/10.1523/JNEUROSCI.0542-08.2008
- Allen JS, Lambert AJ (1996) Antisaccadic eye movements and attentional asymmetry in schizophrenia in three pacific population. Act Psychiatr Scand 94(4): 258–265. https://doi.org/10.1111/j.1600-0447.1996.tb09858.x
- Cletmentz BA, McDowell JE, Stewart SE (2001) Timing and magnitude of frontal activity differentiates refixation and anti-saccade performance. Neuroreport 12(9): 1863–1868. https://doi.org/10.1097/00001756-200107030-00020
- Славуцкая МВ, Шульговский ВВ (2004) Потенциалы головного мозга человека перед антисаккадами. Журн высш нерв деятельн им ИП Павлова 54(3): 320–330. [Slavutskaya MV, Shulgovskii VV (2004) The brain potentials before antisaccades in man. Zh Vyssh Nerv Deiat Im IP Pavlova 54(3): 320–330. (In Russ)].
- Evdokimidis I, Smyrnis N, Constantinidis TS, Gourtzelidis P, Papageorgiou C (2001) Frontal-parietal activation differences observed before the execution of remembered saccades: an event-related potentials study. Cognit Brain Res 12(1): 89–99. https://doi.org/10.1016/s0926-6410(01)00037-4
- Brignani D, Maioli C, Maria Rossini P, Miniussi C (2007) Event-related power modulations of brain activity preceding visually guided saccades. Brain Res 1136(1): 122–131. https://doi.org/10.1016/j.brainres.2006.12.018
- Coull JT (1998) Neural correlates of attention and arousal insights from elrctrophysiology, functional neuroimaging and psychopharmacology. Progr Neurobiol 55(4): 343–361. https://doi.org/10.1016/s0301-0082(98)00011-2
- Posner MJ, DiGirolamo GJ (2000) Attention in cognitive neuroscience: an overview. The New Cognitive Neurosciences. A Bradford Book. Gazzaniga MS (Ed). The Mit Press. Cambrdge, Massachusets, London. 623–630.
- Tseng Ph, Chang Ch, Chiau HY, Liang WK, Liu ChL, Hsu TY, Hung DL, Tzeng OJL, Juan ChH (2013) The dorsal attentional system in oculomotor learning of predictive information. Front Neurophiziol 2(7): 404. https://doi.org/10.3389/fnhum.2013.00404
- Kuo B, Stokes MG, Nobre ACh (2012) Attention modulates maintenance of representations in visual short-term memory. J Cogn Neurosci 24(1): 51–60. https://doi.org/10.1162/jocn_a_00087. Epub 2011 Jul 7
- Uhlhaas PJ, Haenschel C, Nikolic´ D, Singer W (2005) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34(5): 927–943. https://doi.org/10.1093/schbul/sbn062
- Gur RE, Chin S (1999) Laterality in functional brain imaging studies of schizophrenia. Schizophr Bull 25(1): 141–156. https://doi: 10.1093/oxfordjournals.schbul.a033361
- Chahine G, Richter A, Wolte S, Goya-Maldonado R, Gruber O (2017) Disruptions in the left frontoparietal network underlie resting state endophenotypic markers in schizophrenia. Human Brain Mapping 38: 1741–1750. https://doi.org/10.1002/hbm.23477
- Tomyshev AS, Lebedeva IS, Akhadov TA, Omelchenko MA, Rumyantsev AO, Kaleda VG (2019) Alterations in white matter microstructure and cortical thickness in individuals at ultra-high risk of psychosis: A multimodal tractography and surface-based morphometry study. Psychiatr Res Neuroim 289: 26–36. https://doi: 10.1016/j.pscychresns.2019.05.002
- Li R-R, Lyu H-L, Liu F, Lian N, Wu R-R, Zhao J-P, Guo WB (2018) Altered functional connectivity strength and its correlations with cognitive function in subjects with ultra-high risk for psychosis at rest. CNS Neurosci Ther 24: 1140–1148. https://doi.org/10.1111/cns.12865
- Goldman-Rakic PS (1997) Circuitry of primate prefrontal cortex and regulation of behavior by representation memory. Handbook of Physiology Sect I Am Physiol Soc. Bethesda Maryland. V 5 part I: 373.
- Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
- Missonnier P, Herrmann FR, Zanello A, Badan M, Curtis L, Canovas D, Chantraine F, Richiardi J, Giannakopoulos P, Merlo MCG (2012) Event-related potentials and changes of brain rhythm oscillations during working memory activation in patients with first-episode psychosis. J Psychiatry Neurosci 37(2): 95–105. https://doi.org/10.1503/jpn.110033
- Gratton G (1998) The contralateral organization of visual memory: a theoretical concept and a research tool. Rev Psychophysiol 35(6): 638–644. https://doi.org/10.1111/1469-8986.3560638
- Malecki U, Stallforth S, Heipertz D, Lavie N, Duzel E (2009) Neural generators of sustained activity differ for stimulus-encoding and delay maintenance. Eur J Neurosci 30(5): 924–933. https://doi.org/10.1111/j.1460-9568.2009.06871.x
- Funahashi S, Takeda K (2002) Information processes in the primate prefrontal cortex in relation to working memory processes. Rev Neurosci 13(4): 313–345. https://doi.org/10.1515/revneuro.2002.13.4.313
- Rowe J, Friston K, Frackowiak R, Passingham R (2002) Attention to Action: Specific Modulation of Corticocortical Interactions in Humans. NeuroImage 17(2): 988–998. https://doi.org/10.1006/nimg.2002.1156
- Ford JM, Mathalon DH (2012) Anticipating the future: Automatic prediction failures in schizophrenia. J Psychophysiol 83(2): 232–239. https://doi.org/10.1016/j.ijpsycho.2011.09.004
- Smith ES, Crawford TJ (2021) Memory-Guided Saccades in Psychosis: Effects of Medication and Stimulus Location. Brain Sci 11: 1071–1088. https://doi.org/10.3390/brainsci11081071
补充文件
